Developer Documentation

QuickTime 6

QuickTime

zzzzzzzz

[0 Apple Computer, Inc.

© 2002 Apple Computer, Inc.
All rights reserved.

No part of this publication or the
software described in it may be
reproduced, stored in a retrieval system,
or transmitted, in any form or by any
means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc., except in the
normal use of the software or to make a
backup copy of the software or
documentation. The same proprietary
and copyright notices must be affixed to
any permitted copies as were affixed to
the original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all backup
copies) may be sold, given, or loaned to
another person. Under the law, copying
includes translating into another
language or format. You may use the
software on any computer owned by
you, but extra copies cannot be made for
this purpose.

Printed in the United States of America.

The Apple logo is a trademark of
Apple Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple-labeled or Apple-licensed
computers.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, LaserWriter, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and may
be registered in certain jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG and/or
its subsidiaries.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

QuickView™ is licensed from Altura
Software, Inc.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, ADC will replace the
media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to ADC.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Contents

What’s New in QuickTime 6

Using Gestalt to Get the QuickTime Version 9
Documentation and Other Resources 10
Bug Reporting 10
Installing QuickTime 6 11
Summary of Changes and Enhancements 12
Enhancements 12
Changes 15
Updates 16
For Web Developers 16
Support for MPEG-4 17
Background 17
MPEG-1 and QuickTime 18
MPEG-4 and QuickTime 18
MPEG-4 File Format and QuickTime 21
Inside the QuickTime File Format 21
MPEG-4 Web Resources 22
Acronyms and Terms for Understanding MPEG-4 23
Acronyms and Terms Specific to MPEG-4 23
Other Useful Terms 24
Working with MPEG-4 Files 24
How The Process Works 25
New Dialogs for Handling MP4 Files 25
New Video Codec for MPEG-4 31
ISMA and Definitions of Profile 0 32
Profiles and Levels Defined 33
ISMA Profile 0 34
ISMA Profile 1 34
3GPP (Third Generation Partnership Project) 34
Gamma Correction 34
Additional Dialog for MPEG-4 Video Compression 34
Summary 35
MPEG-4 Audio Support 36
Defining AAC 36

© Apple Computer, Inc. July, 2002

QuickTime AAC Encoder 36
QuickTime AAC Decoder 38
Native MPEG-4 Streaming 39
MPEG-4 and Web Developers 39
Ways To Use MPEG-4 In QuickTime 40
Why Use MPEG-4 On The Web? 40
Creating QuickTime Movies With MPEG-4 Compression
Creating .mp4 Files 42
Playing .mp4 Files in QuickTime 43
Example: Playing .mp4 files over the Web 44
ISO Compliance 45
RTSP Instant-On Enhancement to Streaming 46
User Interface Changes 47
JPEG 2000 Support 49
Flash 5 Support 50
New Flash Media Handler 50
Flash Movie Importer 51
New Flash Properties Info Panel 51
Controlling Mouse Capturing Setting 52
New APIs for Tasking QuickTime 53
The Idle Manager APls 60
Derived Media Handlers 61
Three Useful Idle Manager Calls 63
General Purpose Idle Manager API 65
Data Handlers 67
Movie Importers 68
New Carbon Movie Control 69
Background 69
How It Works—An Event Target 70
Providing Time to Movies 70
Support for Editing 70
Interface 70
Access to Underpinnings 72
Sprite APl Changes 73
Loading Images into a Sprite Track 73
New Sprite APIs 74
Sprite Hit-Testing Mode 77
Controlling Hit-Testing Mode of an Individual Sprite
Controlling Hit-Testing Mode of a Sprite Track 78
Handling Mouse Clicks 79
Sprite Track Setting Enhancements 79
Limited Control of Offscreen Bit Depth 80
New Preferred Bit Depth Info Panel 81
Switching Between Modes 81
A New Sprite Track Property 82
Using the SpriteSetSpriteProperty API 83
New Wired Actions and Operands 83

© Apple Computer, Inc. July, 2002

42

77

New Sprite Actions 83
New Sprite Operands 85
New Wired Actions and Operands for Chapter Lists 85
Going To a Chapter by Index 85
Getting the Name and the Index of a Chapter 86
New Wired Actions and Operands for Sprites and Sprite Tracks 86
Sprite Hit Testing Property, Actions, and Operands 87
Miscellaneous Wired Actions and Operands 87
kQTEventKeyUp Event Type Added 87
Random Seed 87
QTVR Object Actions and Operands 88
Additional New Actions and Operands 88
VBR Sound Compression Support 90
Background 90
QuickTime 6 VBR Support 91
Some Techniques For Compressing VBR Audio 91
Using the Standard Sound Compression
Component and VBR Compression 94
Audio File Formats and VBR Compression 95
Doing Something with VBR Audio Data 95
New Tween Component API 97
Changes to Effects Dialog 99
Custom Effect Controls 101
New Behavior Flag kCustomControl Added 102
Using pdActionCustomNewControlControl to Create New Custom
Controls 103
Displaying Text Properly in Application Windows 104
Using pdActionCustomHandleEvent To Process Events 105
Using pdActionCustomSetFocus to Set or Advance Current
Focus 106
Using pdActionCustomSetEditMenu To Locate The Edit Menu 107
Using pdActionCustomSetPreviewPicture To Preview
Information 107
Using pdActionCustomGetEnableValue to Enable or Disable Other
Controls 108
Using pdActionCustomSetSampleTime to Specify Duration and Start
Time 109
Using pdActionCustomDoEditCommand to Handle Edit
Commands 109
QuickTime Effects Classes 112
Major Class 113
Minor Class 113
QuickTime Effects Presets 115
Atom Contents 115
Example Effect 'atms' Resource 115
None Codec Enhancements 117

© Apple Computer, Inc. July, 2002

Additional Still Image Metadata Support
in Mac OS 9 and Windows 121
Indexed Image Types 121
Alpha Modes 123
Extracted TIFF and Exif Metadata 123
New APIs For Creating Exif Files 125
Improved Movie Toolbox Support for Data Handlers 128
Background 128
Data Handlers and the New QuickTime APIs 129
OpenADataHandler Extended 146
Advanced APIs 146
New User Data APIs 152
QuickTime for Java Enhancements 157
Support for JDK 1.4 157
New JQTCanvas 157
New QTVR Authoring Classes 158
Improved QuickTime Client Streaming Support 158
New Sprite Handler APIs 159
AppleScript Changes 160
Recordability 160
Terminology Changes 161
New Commands 161
Enhanced Commands 163
New Sequence Grabber User Interface 167
New Sequence Grabber APls 170
New Image Compression APIs 186
New Image Decompression Manager APls 192
New Media Handler APIs For Keyboard Focus 195
Adding Keyboard Focus Capabilities 195
Adding Keyboard Navigation and Editable Text Field Support
New QuickTime Restrictions APIs 205
New APIs For Controlling Memory Usage in Movies 210
Miscellaneous Changes and Enhancements 213
Change For All Video Output Components 213
QuickTime VR 213
New QuickTime Menu in Windows 213
New Movie Errors API 214
MIDI Files Now Imported In Place 215
Enabling High Quality on MPEG-4 Video Tracks 216
QuickTime XML Importers 216
SMIL Importer 217
QuickTime Media Link Importer 217
Component Preflight Importer 218
Writing XML Importers 221
New XML Exporter 221
How It Works 221
Media Link Exporter Settings 222

© Apple Computer, Inc. July, 2002

203

Using the Media Link Exporter 223
Default Settings 224
MovieQTList Embed Tag Attribute 225
SMIL Meta Tag Support in QuickTime 228
JavaScript Support for ActiveX, Netscape 6 and Mozilla 230
Playing Shoutcast or Icecast Streams in QuickTime 233
Background 233
Shoutcast and Icecast in QuickTime 234
Opening Icecast or Shoutcast URLS 234
Playing Icecast or Shoutcast Streams
in QuickTime Player 236
Playing Icecast or Shoutcast Streams
in the QuickTime Browser Plug-in 236
Playing Icecast or Shoutcast Streams
Using the QuickTime API 237

Appendix A Document Revision History 239

© Apple Computer, Inc. July, 2002

© Apple Computer, Inc. July, 2002

What’s New In
QuickTime 6

Welcome to QuickTime 6.

This document provides a list of the new features, changes,

and enhanced capabilities that are available in QuickTime 6. If you are a
QuickTime API-level developer, content author, multimedia producer or
Webmaster who is currently working with QuickTime, you should read this
document.

Using Gestalt to Get the QuickTime Version

As always, the standard way for Apple developers to determine which
version of QuickTime is installed is by calling the Macintosh Toolbox API
Gestalt function. (This Mac OS function is also included in QuickTime
for Windows.)

Listing 1 shows a code snippet that demonstrates how you can check the
version of QuickTime that is installed—in this case, QuickTime 6. Note that the
number 0x06008000 will test for the GM version of QuickTime 6 but will fail on
pre-release versions of QuickTime.

Listing 1 Determining which version of QuickTime is installed by calling the
Gestalt function

/* check the version of QuickTime installed */
long version;

0SErr result;

result = Gestalt(gestaltQuickTime,&version);

if ((result == noErr) && (version >= 0x06008000))
{

© Apple Computer, Inc July, 2002

10

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

/* we have version 6! */

Documentation and Other Resources

This document is intended to provide QuickTime developers with detailed
information designed to support their programming and development efforts.
It is designed to supplement the information provided in the QuickTime API
Reference and the suite of QuickTime documentation which is available online,
in both HTML and PDF formats, for download at

http://developer.apple.com/techpubs/quicktime/qtdevdocs/RM/newsframe.htm
For other QuickTime developer documentation, you should refer to
http://www.apple.com/quicktime/developer/

For complete QuickTime API documentation, refer to

http://developer.apple.com/techpubs/quicktime/qtdevdocs/RM/frameset.htm

Updates to the QuickTime technical documentation website are provided on a
regular basis; developers can also subscribe to various mailing lists for the latest
news and information.

To sign up for any of Apple’s Developer Programs, refer to

http://developer.apple.com/membership/index.html

Bug Reporting

If you encounter any problems using QuickTime 6, please report them, using
the standard Apple bug reporting mechanism described in the Release Notes
accompanying the QuickTime 6 release. It is very important to include a copy of
the file when you report such bugs.

© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Installing QuickTime 6

QuickTime 6 is available for download for Mac OS 8 and 9, Mac OS X, and
Windows. The download site is:

www.apple.com/quicktime/download/

This is the first QuickTime release that has included an installer for Mac OS X.
Users of Mac OS X version 10.1.5 can install QuickTime 6 using the installer on
the QuickTime download page.

Note that the QuickTime 6 installer for OS X will not work on the Jaguar release
of Mac OS X, including pre-release versions of Jaguar that contain an earlier
version of QuickTime 6. The released version of Mac OS X that corresponds to
Jaguar already contains a slightly newer version of QuickTime 6 than the one
available for download.

If you have difficulty performing an installation over the Web because of a
firewall, or if you need to perform multiple installations on a campus or
business, you can download stand-alone installers by following the links on the
download page.

QuickTime Pro users should note that QuickTime 6 requires new registration
numbers. The registration numbers for QuickTime 5 or earlier versions do not
unlock the pro features of QuickTime 6. For the pro version of QuickTime 6, you
need to purchase new registration numbers from Apple. The price is currently
$29.99 USD.

If you need to uninstall QuickTime, run the installer, select the custom install,
and choose Uninstall from the pop-up menu.

If you need to install an earlier version of QuickTime, installers for QuickTime 5
and QuickTime 4 are available from QuickTime support:

http://www.info.apple.com/usen/quicktime/

Installing QuickTime 6 11
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Summary of Changes and Enhancements

12

QuickTime 6 is the first major iteration of QuickTime that is designed to support
the International Organization for Standardization (ISO) specification for
MPEG-4 video and audio. This is a significant advance beyond earlier versions
of QuickTime, in that it allows multimedia producers, content authors and
video artists the capability of distributing .mp4 files—in native MPEG-4 video
and audio format—across the Internet, so that those files can be decoded and
played on other players that conform to the ISO MPEG-4 standard.

In one scenario, QuickTime authors will be able to simply install QuickTime 6
and move through their normal workflow, and then, in addition to having the
option of encoding a file using the Sorenson 3 or H.263 codec, authors will be
able to output the content of that file as an .mp4 file. This content could then,
potentially, be played on any ISO-compliant device available to end users.

In addition to support for the MPEG-4 standard, this release of QuickTime also
includes a number of new features and enhancements, discussed in this
document.

Enhancements

= Support for ISO-compliant MPEG-4 video and audio, both encode and
decode. Developers, authors, and multimedia producers can now create and
play back MPEG-4 video content, as well as MPEG-4 audio encoded using
Advanced Audio Coding (AAC). Discussed in the section “Support for
MPEG-4” (page 17).

= QuickTime 6 also supports use of the MPEG-4 video and AAC audio codecs
in QuickTime movies. In many cases, you can choose to create either a native
.mp4 file or a QuickTime .mov file using MPEG-4 compression. This allows
you to mix MPEG-4 audio and video with other QuickTime media, such as
VR panoramas, sprites, or Flash tracks. Discussed in the section “MPEG-4
and Web Developers” (page 39).

= A new group of MPEG-4 settings dialogs in QuickTime Player that enable
QuickTime Pro users who work with MP4 files to make a number of
adjustments in video and audio tracks, streaming and compatibility.
Discussed in the section “Working with MPEG-4 Files” (page 24).

Summary of Changes and Enhancements

© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

= Anew video codec for MPEG-4 video compression. The new codec is ISMA
compliant and conforms to the Profile 0 standard of the MPEG-4
specification, with an extremely low data rate of 64 Kbits/second. The
advantage that this new codec offers is interoperability with other systems.
Interoperability is the primary goal of the new codec. Discussed in the
section “New Video Codec for MPEG-4” (page 31).

= Anew MPEG-4 audio codec that plays audio files of AAC and handles ISMA
profile levels 0 and 1. In the current release both encode and decode are
supported. Discussed in the section “MPEG-4 Audio Support” (page 36).

= Support for native MPEG-4 streaming. Standard hinted MPEG-4 files (.mp4)
can be served directly, without converting to QuickTime Movie (.mov) files.
Discussed in the section “Native MPEG-4 Streaming” (page 39).

= Anew, RTSP Instant-On enhancement to QuickTime streaming that provides
near instantaneous start of streamed movies when the available network
bandwidth significantly exceeds the data rate of the target media. Discussed
in the section “RTSP Instant-On Enhancement to Streaming” (page 46).

= Support for JPEG 2000, a high-quality, still-image compression and coding
standard that uses state of the art compression techniques based on wavelet
technology. Note that JPEG 2000 support is only provided on Mac OS X in
the current release of QuickTime 6. Discussed in the section “JPEG 2000
Support” (page 49).

= New and updated components related to Macromedia Flash 5 support in
QuickTime. The Flash media handler and the Flash movie importer have
been updated, and a new Flash Properties panel has been added to the
QuickTime Player info panels. Discussed in the section “Flash 5 Support”

(page 50).

= A new QuickTime tasking mechanism and new APIs to handle idling of
applications. Discussed in the section “New APIs for Tasking QuickTime”
(page 53).

= A new Carbon Movie Control mechanism for Mac OS X that makes the

process of using QuickTime within a Carbon Event-based application easier
and faster. Discussed in the section “New Carbon Movie Control” (page 69).

= A new group of Sprite APIs, as well as a number of new wired actions and
operands. Discussed in the section “Sprite APl Changes” (page 73).

= Support for writing and using variable bitrate (VBR)-enabled sound
compressor components. Both the QuickTime Movie exporter component

Summary of Changes and Enhancements 13

© Apple Computer, Inc July, 2002

14

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

available in the export dialog (also known as the ConvertMovieToFile API
dialog) and the Standard Sound compression dialog component have been
updated to use and recognize VBR compressor components. Discussed in the
section “VBR Sound Compression Support” (page 90).

= A new API that provides tween components with an interrupt-safe interface.
Discussed in the section “New Tween Component API” (page 97).

= New, enhanced effects dialogs. Effects may choose to implement custom
controls to allow the user to more easily edit complex parameters that are
ill-served by simple sliders or type in boxes. Effects may allow a custom
control for either a single parameter, or for a group of parameters. Discussed
in the section “Changes to Effects Dialog” (page 99).

= A new improved None codec (also known as the Raw codec) that replaces
the previous None codec with a more complete implementation. Discussed
in the section “None Codec Enhancements” (page 117).

= Support for Exif JPEGs and Exif TIFFs, including support for thumbnails,
which was previously only available in QuickTime 5 on Mac OS X 10.1, and
is now available for QuickTime on Mac OS 9 and Windows. Discussed in the
section “Additional Still Image Metadata Support in Mac OS 9 and
Windows” (page 121).

= New QuickTime data handler-aware APIs that make using Apple and
custom data handlers easier for third-party developers. Discussed in the
section “Improved Movie Toolbox Support for Data Handlers” (page 128).

= New UserData APIs that can be useful in copying information from one
UserData container to another (page 152).

= Support for a number of new features and enhancements in QuickTime for
Java, including support for JDK 1.4 (Windows only), and the introduction of
the JaTcanvas class, a new lightweight version of the qTCanvas class which
supports scaling of Flash content. Discussed in the section “QuickTime for
Java Enhancements” (page 157).

= A new, improved sequence grabber user interface which includes new
settings available on all platforms. A new group of Sequence Grabber APIs
are also included in QuickTime 6. Discussed in the sections “New Sequence
Grabber User Interface” (page 167) and “New Sequence Grabber APIs” (page
170).

Summary of Changes and Enhancements

© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

= New Image Compression APIs that allow compressors to supply the User
Interface for their options within the compression dialog (page 186), as well
as new Image Decompression Manager APIs (page 192).

= New media handler calls that developers can use to write media handlers
that support keyboard focus. If you want to add interactive capabilities to
your application, you need to use these media handler calls. Discussed in the
section “New Media Handler APIs For Keyboard Focus” (page 195).

= New APIs that provide a mechanism for preflighting operations on
QuickTime content that may be restricted. Discussed in the section “New
QuickTime Restrictions APIs” (page 205).

= New APIs for better controlling memory usage in movies in Mac OS X (page
210).

= Miscellaneous enhancements to QuickTime VR, and an additional movie
errors API (page 213).

= Anew XML exporter—Export to QuickTime Media Link—which creates a
small XML file that contains the URL of a movie, as well as other user
settings. Discussed in the section “New XML Exporter” (page 221).

= JavaScript support for ActiveX controls, Netscape 6 and browsers based on
Mozilla. This means you can now use JavaScript to control QuickTime when
Web pages are viewed using Internet Explorer for Windows, or any other
browser that supports the COM interface to ActiveX controls. Discussed in
the section “JavaScript Support for ActiveX, Netscape 6 and Mozilla” (page
230).

= Support for DVCPro PAL (DV format 4:1:1) on Mac OS X (10.1.2).

Changes

= Changes to the QuickTime Player user interface. Notably, the Hot Picks
movie and the Channel pane have a new layout, with channel categories on
the left and a movie on the right. Discussed in the section “User Interface
Changes” (page 47).

= Changes to AppleScript and AppleScript terminology that are new in
QuickTime 6. Most notably, QuickTime Player is now a recordable
application. There are also a humber of new commandes, classes, and
properties, and well as modifications to existing terminology elements.
Discussed in the section “AppleScript Changes” (page 160).

Summary of Changes and Enhancements 15

© Apple Computer, Inc July, 2002

16

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

= Changes to the QuickTime menu in the Windows system tray, which
includes a number of new menu items. Discussed in the section “New
QuickTime Menu in Windows” (page 213).

Updates

= New documentation on how to deal with the ever-increasing number of
effect components. This section documents atoms that can be used for
tagging effects into useful categories. Two groupings for effects are defined
here: Major Class and Minor Class. Discussed in the section “QuickTime
Effects Classes” (page 112).

= Some effects with complex parameters would like to provide the user with
groups of useful parameter values that can be easily selected. This section
documents an optional mechanism that can be used by effects to define these
“presets.” Discussed in the section “QuickTime Effects Presets” (page 115).

= New and updated documentation on QuickTime XML importers. These
importers, introduced in QuickTime 5, create movies based on the contents of
certain kinds of XML files saved with the .mov file extension. XML files with
the .mov file extension are treated by networks and operating systems as
QuickTime movies. There are importers for three XML types currently built
into QuickTime: SMIL importer, QuickTime media link importer, and
component preflight importer. Discussed in the section “QuickTime XML
Importers” (page 216).

= QuickTime 6 allows you to play current Shoutcast or Icecast streams that use
MP3 compression. This section “Playing Shoutcast or Icecast Streams in
QuickTime” (page 233) discusses the various features of Shoutcast and
Icecast streams, as well as what you need to know in order to deliver these
streams in real-time over a network.

For Web Developers

= Specific information about the different ways that you can use QuickTime 6
and MPEG-4, if you are a developer who creates websites, website authoring
tools, or QuickTime movies that are intended for distribution over a network
or the Internet. Discussed in the section “MPEG-4 and Web Developers”

(page 39).

Summary of Changes and Enhancements

© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Support for MPEG-4

QuickTime 6 supports ISO-compliant MPEG-4 video and audio, both encode
and decode. This means that you can create and play back MPEG-4 video and
audio content. In addition, you can play back MPEG-4 audio encoded using
Advanced Audio Coding (AAC).

Of notable importance is that an .mp4 file is not a QuickTime movie. It must be
imported into QuickTime. You can open .mp4 files using API functions that
support importers, such as NewMovieFromFile OF NewMovieFromDataRef, Or by
calling an MPEG-4 importer directly. End users can open .mp4 files using
QuickTime Player’s Open or Import commands, by drag-and-drop, or using the
QuickTime browser plug-in (see the section “MPEG-4 and Web Developers”
(page 39)). Double-clicking an .mp4 file from the desktop may or may not open
the file in QuickTime, as other applications can register to handle this file type.

Using the Export to MPEG-4 option in the export dialog, you can create an .mp4
file containing either video, audio, or both, as discussed in the section “Working
with MPEG-4 Files” (page 24).

Background

In February 1998, the International Standards Organization (ISO) formally
adopted the QuickTime file format as the starting point for the MPEG-4 file
format, the latest in a series of standards for transmitting video and audio
information. MPEG-4 differs from MPEG-1 and MPEG-2 by adopting a
component-based architecture for multimedia, an approach similar to
QuickTime’s architecture. Other existing standards have less flexibility and treat
multimedia as just an array of picture elements.

Support for MPEG-4 17
© Apple Computer, Inc July, 2002

18

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

MPEG-1 and QuickTime

MPEG-1, often simply called MPEG, is fairly common on the Web and
CD-ROMs, typically with the .mpg file extension. MPEG-1 supports one kind of
video compression and a few types of audio compression. MPEG-1 allows
coding of moving pictures and associated audio for digital storage media at up
to about 1.5 Mbit/second. The content of an MPEG file is one or more MPEG
streams. Elementary audio and video streams can be multiplexed into a
combined stream.

MPEG-1 was designed to provide VHS-quality video at T1 data rates (single
speed, or 1x, CD-ROM). It is the basis for the video CD standard, which is little
used in the United States or Europe but is popular in Asia. Most commercial
DVD players can play video CDs, however, and the rapid spread of CD-R
burners and DVD players is currently fueling renewed interest in this format.

QuickTime can open and play MPEG-1 video on both Windows and Macintosh
(requires QuickTime 5 or later for Windows). It can then export the video to
other formats using any of the QuickTime compressors. Currently, QuickTime
treats the entire MPEG-1 stream as a single sample, so you cannot cut or copy
part of an MPEG-1 video unless you convert it to a different compression
format first.

MPEG-1 can also contain audio. The audio can be compressed in two different
formats: layer 2 (often called MPEG-1 audio) and layer 3 (known as MP3).
QuickTime plays both layer 2 and layer 3 audio without difficulty, including
streaming MP3 such as ShoutCast. QuickTime can also play multiplexed layer 2
audio (audio and video streams combined), but it cannot export or extract layer
2 audio from a multiplexed MPEG-1 stream.

QuickTime Player does not export to MPEG-1 streams, nor does it compress
audio or video using MPEG-1 compression. MPEG-1 compression can be added
to QuickTime with the Heuris MPEG codec (www.heuris.com/) or with the
MPEG-1 encoder included with Roxio Toast (www.roxio.com/).

MPEG-4 and QuickTime

The MPEG-4 standard was recently revised to MPEG-4 Version 2, which is the
latest standardized version. (Note that amendments to Version 2 have already
been added, as the standard grows and evolves.) In any case, the standard
outlines file conventions and compression formats not only for audio and

Support for MPEG-4
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

video, but for text and multimedia integration. Because the MPEG-4 file format
is largely based on the QuickTime file format, MPEG-4 files are potentially as
diverse in content as QuickTime movies. This is a rich and complex
specification.

Software and hardware vendors will implement the MPEG-4 specification in
stages. The parts of the specification that are implemented by a given MPEG-4
player are called a player profile.

A profile is, essentially, a grouping of technologies, defined as “tools” in MPEG
terminology. Profiles are a “normative” part of the standard, in that an
implementation must conform to a profile in order to claim conformance to the
standard itself. Profiles are specified in such a way as to maximize
interoperability.

A good example is the way in which this was applied to the MPEG-1 Audio
standard. There are three layers in MPEG-1 Audio. Layer 1 has the least
complexity but the lowest compression performance, while Layer 3 has the
highest complexity but also the highest compression performance. Profiles that
include layer 3 also typically include layers 1 and 2. In this case, interoperability
is maximized because a terminal implementing a profile which includes layer 3
can decode layer 1, 2 and 3 bitstreams, while a layer 2 terminal can decode only
layer 1 and 2 bitstreams and a layer 1 decoder only a layer 1 bitstream.

No one currently implements the full MPEG-4 specification. There are no
widely distributed MPEG-4 video codecs. (There was a codec available for
Windows Media Player called MS MPEG-4, but this was actually a proprietary
Microsoft codec that was partly based on a draft specification for MPEG-4. The
early version released by Microsoft was not compatible with the final standard,
and has since been renamed. Microsoft has also released a standard MPEG-4
codec, but it is not in an interoperable file format.)

QuickTime’s MPEG-4 video codec focuses on low-bandwidth video for Internet
delivery, with the goal of delivering near-television quality over DSL and cable
modems, and reasonable quality over dialup modems.

QuickTime’s implementation of MPEG-4 is designed to be interoperable with
products from other standards-compliant vendors.

A diagram of the MPEG-4 system architecture is shown in Figure 1. The items
in bold in specific boxes indicate the various parts of the architecture that
QuickTime currently supports.

Support for MPEG-4 19
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Figure 1 MPEG-4 system architecture

Terminal

) Scene
or Client

Video < ::\ Scene is constructed by

area drawing the basic scene,
) AN . placing audio and video
@% 419 in the scene, and then

animating it.

N

—| Scene description <::\

__] Scene animation <:
1)

General AAC and Cstflgegz‘d Music stra/lcltlalred Text to Face/Body video still
audio TwinVQ HYXC HILN audio speech animation
s J
|: Stream Manager
4 m 4 m 4 m 4 m 4 m
AN

Local or ; Describe, add, and
Network [Delivery streams (local or over network) J g
MP4 File

) . DRM Object descriptor Insert-

Visual Audio Scene MPEGJ (IPMP) (stream management) Object

RS N W | 7

MP4 file format

20 Support for MPEG-4
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

MPEG-4 File Format and QuickTime

The MPEG-4 File Format (MP4), which is derived from the QuickTime File
Format, is a format that is designed to store MPEG-4 data in a file. This process
is outlined by Rob Koenen, chair of the MPEG-4 Requirements Group, in his
document MPEG-4 Overview, which provides a brief overview of the MPEG-4
File Format, as follows:

“The MP4 file format is designed to contain the media information of an
MPEG-4 presentation in a flexible, extensible format which facilitates
interchange, management, editing, and presentation of the media. This
presentation may be ‘local’ to the system containing the presentation, or may be
via a network or other stream delivery mechanism. The file format is designed
to be independent of any particular delivery protocol while enabling efficient
support for delivery in general. The design is based on the QuickTime format
from Apple Computer Inc.”

The diagram shown in Figure 2 gives an example of a simple interchange file.
Note that BIFS, an acronym for Binary Format for Scene, specifies the Scene,
and OD (Object Descriptor) specifies the Stream Management.

Figure 2 A simple interchange file

mp4 file /—\
————
moov B mdat

10D "trak’ (BIFS) Interleaved, time-ordered,

BIFS (scene), OD (Stream
"trak' (OD) Management), video, and

__other atoms audio access units
"trak' (video)

"trak' (audio)

Inside the QuickTime File Format

The QuickTime file format is designed to accommodate the various kinds of
data that need to be stored in order to work with digital media. Because the file
format can be used to describe almost any media structure, it is an ideal format

Support for MPEG-4 21
© Apple Computer, Inc July, 2002

22

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

for the exchange of digital media between applications, regardless of the
platform on which the application may be running.

The basic data unit in a QuickTime file is the atom. Each atom contains size and
type information along with its data. The size field indicates the number of
bytes in the atom, including the size and type fields. The type field specifies the
type of data stored in the atom and, by implication, the format of that data.

Atom types are specified by a 32-bit integer, typically a four-character code.
Apple Computer reserves all four-character codes consisting entirely of
lowercase letters. Unless otherwise stated, all data in a QuickTime movie is
stored in big-endian (network) byte ordering. All version fields must be set to 0,
unless otherwise stated. Atoms are hierarchical in nature. That is, one atom can
contain one or more other atoms of varying types.

For more detailed information, refer to the volume Inside QuickTime: QuickTime
File Format (351 pp, 2.3 MB), which is available as a free download from Apple’s
QuickTime API website in both HTML and PDF formats at

http://developer.apple.com/techpubs/quicktime/qtdevdocs/RM/frameset.htm

The book begins with an introduction to QuickTime atoms, then presents the
structure of the QuickTime file format in detail. This is followed by a series of
code examples for manipulating a QuickTime file using the QuickTime API. A
series of appendixes describe some common file formats that can be contained
within a QuickTime file as data. The book is intended primarily for developers
who need to work with QuickTime files outside the context of the QuickTime
environment.

MPEG-4 Web Resources

The home page of the Moving Picture Experts Group (MPEG), a working group
of ISO/IEC in charge of the development of standards for coded representation
of digital audio and video, can be found at

http://mpeg.telecomitalialab.com/

An in-depth presentation of MPEG-4 can be found at

http://www.cselt.it/mpeg/standards/mpeg-4/mpeg-4.htm

Support for MPEG-4
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Answers to specific MPEG-4 questions can be found at

http://www.cselt.it/mpeg/faqg.htm

MPEG-4 standards are in the 14496 series and the specifications can be
purchased from ISO at

http://www.iso.ch

The MPEG-4 implementation forum promotes MPEG-4 and is spearheading
licensing efforts at

http://www.m4if.org

The Internet Streaming Media Alliance (ISMA) is promoting a specification and
integration of products around a subset of MPEG-4 over IP networks at

http://www.isma.tv

Acronyms and Terms for Understanding MPEG-4

A veritable alphabet soup of acronyms and terms has emerged in the MPEG-4
specification, a sampling of which is shown here.

Acronyms and Terms Specific to MPEG-4

BIFS Binary Format for Scene

CIF Common Intermediate Format (352 x 288)

ESD Elementary Stream Descriptor

IEC International Electrotechnical Commission

10D Initial Object Descriptor

MP4 MPEG-4 File Format

MA4IF MPEG-4 Industry Forum

oD Object Descriptor

Support for MPEG-4 23

© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Other Useful Terms

AVP Audio Visual Profile (IETF RFC 1890)

CRTP Compressed Real-Time Protocol(IETF RFC 2508)

IETF Internet Engineering Task Force

IP Internet Protocol

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

ISMA Internet Streaming Media Alliance

ISO International Organization for Standardization

QCIF Quarter Common Intermediate Format (176 x
144)

QoS Quiality of Service

RFC Request for Comment

RTP Real-Time Protocol (IETF RFC 1889)

RTSP Real-Time Streaming Protocol (IETF RFC 2326)

SDP Session Description Protocol (IETF RFC 2327)

TCP Transmission Control Protocol (IETF RFC 793)

UDP User Datagram Protocol (IETF RFC 768)

Working with MPEG-4 Files

24

QuickTime 6 provides transparent access to MPEG-4 files. You can open .mp4
files using API functions that support importers, such as NewMovieFromFile Or
NewMovieFromDataRef. End users can open .mp4 files using QuickTime Player's
Open or Import commands, or by drag-and-drop. The process is similar to
working with an .avi file or other playable non-movie file. Double-clicking an
.mp4 file from the desktop may or may not open the file in QuickTime, as other
applications can register to handle this file type.

Working with MPEG-4 Files
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Currently, in order to save an .mp4 file, you use the new QuickTime MPEG-4
movie exporter. The exporter offers basically two ways of working:

= Encoding to MPEG-4 video or audio for each track.

= If the data is already MPEG-4 compatible, then it will perform a pass-thru
option for those tracks.

How The Process Works

Typically, when you open a movie, QuickTime finds the movie atom in the file,
processes it, and creates a movie object, i.e., instantiates it. When you use MP4,
you have to invoke the importer. What the importer does is scan the file, find
the "moov' atom, and then conform the 'moov' atom—which is an MPEG-4-style
movie atom—into a 'moov' atom that is QuickTime-style. QuickTime then
creates the movie object.

In the case of exporting, where the data is already in MPEG-4 format—MPEG-4
video or audio—the exporter has QuickTime flatten the data to the file. This
produces the movie atom, which points to the file. The exporter once again
conforms the movie atom, which is QuickTime-style, into a movie atom which
is MPEG-4-style. The exporter then writes this to the file. This is pass-thru.

For an encoding or re-encoding export, the exporter compresses and then writes
the MPEG-4 data to a file, whose movie is subsequently made to conform to
MPEG-4 style.

New Dialogs for Handling MP4 Files

QuickTime 6 introduces a new set of dialogs in QuickTime Player (illustrated in
this section with examples from Mac OS 9 and Mac OS X) that enable end users
to open MP4 files.

To work with MP4 files, end users or content authors need to perform a series of
import-export operations, using QuickTime Pro. The steps are as follows:

1. Open a .mov file in QuickTime Player.
2. In the File menu, click Export.
3. Adialog appears with a list of export options. Choose Movie to MPEG-4.

4, Save the .mov to a .mp4 file.

Working with MPEG-4 Files 25
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

5. The .mp4 file can now be played on any player that supports MPEG-4.

Figure 3 shows the dialog (in Mac OS 9) that appears when you want to save a
QuickTime movie, in this case “cool sunset” to a .mp4 file. From the list of
options in Export, you choose Movie to MPEG-4.

Figure 3 The dialog that appears when you want to save a QuickTime movie to
an MPEG-4 file in Mac OS 9 by exporting

26

[5N new movies = | = Imagined

Ejet

Sered sxporied e os:

cool_sumsel.mpd |

i

Dnport | Movie 1o MPEG- 4

Use; | Defaull Setimgs %]

If you click the Options button in the dialog shown in Figure 3, the MPEG-4
Settings dialog appears, as shown in Figure 4. In this dialog, you can set the
basic video track, the physical size of current movie, and the audio track as
necessary. If Basic is selected, the video will make use of the basic settings for
MPEG-4 and ensure the widest possible range of playback on MPEG-4
compatible devices.

Note that Profile 0, in the text of the dialog, is the ISMA-specified Profile 0, and
not the MPEG-4 defined Profile 0. For more information about ISMA and
Profile 0, refer to the section “ISMA and Definitions of Profile 0” (page 32).

Working with MPEG-4 Files
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Figure 4 The MPEG-4 settings dialog in Mac OS X, with the General pane
selected

SFEL=8 SeltgS

ﬁ_\ﬂdu ¥ avdic | Sweaming T.Enmpﬂih-illw 1

Viden Track Improved :1-'1
Size 320 x 240 3|
fardio Track Music a

‘el weill rRa ke wke of impdoved MPEC -4 Teatures Iknomm ai 1568 Prafds L) This produdes
Filss of higher gualicy, wistle porencially Daimg scompatible with #oms WPEC-4 didces. Thi
wide will harve 3 daca rane ol 900 ke fsecond and & frasne rae of 300 Tramses. per secomd.
The resulisng movie will be 320 by 240 pixels

Auilio will be aptsmided For i (kiimn i Low Cempliady AAC

Thitt MPEC -4 file wall b complisnt with SMA dmerner Sreaming Media Alliance
specificabans

(Canent) €0
e —————————

Note that the lower portion of the dialog in Figure 4 contains additional
description and explanation about the choices that are available to the user.
Audio can be optimized for music—in this case, AAC. (Note AAC can handle a
full range of music and other audio.)

In the Video settings dialog in Mac OS X shown in Figure 5, the end user can
adjust specific settings for video, such as the number of kbits per second, or the
frame rate—for example, 15 frames per second, if that is the rate desired.

Working with MPEG-4 Files 27
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

28

Figure 5 The MPEG-4 settings dialog, with the Video pane selected
MPEG-4 Seiiings
Auvdic | Sireaming | Compatibility |
Video Track: | Basic =
9— khits {second
(¥] 536 1040 1544 2048

Frames per second: |15 | 8

Eey frame every E:] frames I

| W wll makie e oF Dk MPE G4 Taatures (known a5 ISMA Profile 01, Thes sasures
playDack on TR wideil ramgd of WPEC-4 compatible desoss. The video oill hawe & das
{rane of &4 kb ! second ard 2 frame rate of 15 frames per second. The resuliing mowie will
(b 180 by 120 pimels

| Audio will be optimined For music jknwn &6 Low Compleaty AACE

Thits MPEC -4 file will be compliant with SMA Srmernen Sareaming Media Alllasce)
specificabens,

:'I'h:l. Al wrill ‘b himied Bt dirnisereg wia QuickTirs Sieedrming Seteet

(Cancel) 0D

Figure 6 shows the settings available for audio in Mac OS X—for stereo or mono
encoding. If the user selects music in the basic panel, it automatically selects a
high data rate and selects stereo.

Working with MPEG-4 Files
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Figure 6 The MPEG-4 settings dialog in Mac OS X, with the Audio pane selected

MPEL-4 Settings

I General | Videa Strearning | Compatibiity |
| Audio Track: | Music =

khits { setond

3% 1596 %6

Channels; '?Hrl-n- }

| witinn will maks uss of improved MPEG-4 Teanures fionovn as (B8 Profile 1 This produces

| Alies of foeghes Guaaling, while potEnndlly BEng nosmpatible with wome BPEG-4 divicEi Tl'lt

| widen will have a data race of 9040 kbits fsecond and & frame raze of 3020 frames per second. |
| | The resutting movie will be 320 by 240 poes

*-IM will e pgtireaPed Foo emikic deswn i Low Caemplaaify SAC]

Tm:- MPEC -4 fibe will be comgiians with SMA Geqerset Screaming Media &lllasce)
| specihications

) 5

Figure 7 shows the settings dialog for streaming, which enables the user to
select the type of hinting required, as well as maximum packet size and
maximum packet duration.

Working with MPEG-4 Files
© Apple Computer, Inc July, 2002

29

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Figure 7 The MPEG-4 settings dialog in Mac OS X, with the Streaming pane
selected

30

SpElee SIS

I Ganeral T_'urld.en T Audie m Compatibiliny |

if this MPEG-4 file will be streamed, select a ninging Type, Ofherawise,
seloct “Nomne”

Hinting type: | Streaming (basic) -+
M A il palkel LiFs 1450 E Byred
Maximum packer duration; '||':|“" . I E mE

‘whabib vedl ke U of Dakil MPEG-4 Teaturas (Enoem ak ISR Proflle 0), Thet #agures
playhack on The widest rangs of MPEC-4 compatible devices. The video will have & data
rane of &4 kb second amd 2 frame raze of 15 frames per seoond. The resuliing mowie will
b §8 by 120 pimels

duilio will be gpbmided For i Jknown as Low Cemplioly 4ALCE

Thits MPEC -4 file wall be compliant with ISMA Smernes Sreaming Media Alliasce
specificabons

Tk Nlw will ba hinled Bot viraiseng s QuickTima Siredming Senm

fCanewt) FOK D

Figure 8 shows the Compatibility settings dialog in Mac OS X. By default,
QuickTime produces a generic MPEG-4 stream. QuickTime does not check for
any specific layer compatibility features that might be required by ISMA or
other organizations. Nor does QuickTime check if the overall data rate of the
MPEG-4 you're producing is any particular data rate.

The user can select ISMA compliance, and also select the speed at which you
want to stream the file—for example, at a medium data rate.

Working with MPEG-4 Files
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Figure 8 The MPEG-4 settings dialog in Mac OS X, with the Compatibility pane
selected

MPEG-4 Settings

I General | videa ||I Audia T Streaming W
S T, W W—" - 5
If this MPEC=4 file may be used on othar devices, seloct a compatibilog

rypeE. Orherwise, selecy “Nane”.

S MA @

If you wish to stream this MPEC-4 file, select a desired Intermet
comneclion spesd. Dilherwie, seleo "fny

Any =

| Wideo will mafke use of improeed MPEC -4 Reabwres (ancwn 23 ISMA Prolle 11, This produces
files of Fagher guality, while potentially being incompatible with some MPEG) devices, The
wide o will hawe @ data rate of G800 khit ! wecond a0d & frame rate of 30.0 frames per second
Thia redadting s will Be 10 by 240 pladin

Buedin vaill e aptimized fof mussic mnaws a3 Low Comphesing LA

This WPEC-4 file will be complant with S54 (Inbernet §iresmng Wadia Allance)
ipmoBiElinng

f Cancel) £ 0N

New Video Codec for MPEG-4

QuickTime 6 provides a new video codec for MPEG-4 video compression. The
new codec is ISMA compliant and conforms to the Profile 0 standard of the
ISMA specification. It can provide an extremely low data rate of 64 kbits/
second. The advantage that this new codec offers is interoperability with other
systems. Interoperability is the primary goal of the new codec.

New Video Codec for MPEG-4 31
© Apple Computer, Inc July, 2002

32

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

For application developers, this new codec is similar to other codecs that ship
with QuickTime. As such, it behaves like any other codec that developers have
had experience with, such as the JPEG codecs. From a programming point of
view, developers will be able to pop up the Standard Compression dialog and
that will provide a choice for users.

Developers may want to develop certain applications around this codec for
broadcasting, for example, because of its low data rate and because it builds on
the H.263 specification.

The key features of the new video codec for MPEG-4 video compression can be
summarized as follows:

= Implements MPEG-4 Video Simple Profile, which supports
o Video at 50 kbps to 4 Mbps

Streaming

Delivery to wireless handheld devices

o Stored content

o Kiosk applications

o Set-top boxes

= Decodes most ISMA and 3GPP streams

O

O

= Displays a detailed warning if it can’t open a particular stream
= Encodes ISMA- or 3GPP-compliant streams

= Improved video processing, including gamma correction

ISMA and Definitions of Profile O

The Internet Streaming Media Alliance (ISMA) specification <http://
www.isma.tv/> is aimed at producing a technical standard based on MPEG-4 for
files and streaming MPEG-4 video and audio over IP networks. In that
standard, a file will have one video track and one audio track, likewise for
streaming tracks. The aggregate data rate cannot exceed the limit of 64 Kbits/
second, which conforms to Profile 0.

New Video Codec for MPEG-4
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

As ISMA defines it:

“To be compliant with this specification a product must completely implement
profile 0, and may implement additional profiles. For example, an on-demand
video server would likely need to implement all possible profiles to address a
wide client base. However a decoder/terminal may only support profile 0.

“This approach has been taken to ensure that any product certified as ISMA
compliant, has the capability to minimally interoperate with any other ISMA
compliant product.

“This is a definition of base interoperability. Vendors are still free to add
additional functionality beyond that specified in this document. However that
said, a conforming product cannot make any additional requirements beyond
this specification to interoperate with another conforming system.”

In the specification, Profile 0 is defined this way:

“Rationale: This profile was selected to allow for video and audio at bitrates
suitable that match capabilities of narrowband and mobile wireless
infrastructures and to align with the patent pool work in M4IF.”

For video, this includes the following:

s REQUIRED - MPEG-4 ISO/IEC 14496-2:1999 + Cor 1:2000 + Cor 2:2001
= MPEG-4 Simple Profile @ Level 1

= Typical Visual Session Size is QCIF (176x144)

= Maximum bitrate is 64kbit/s

= ISMA Restriction: Profile 0 is limited to one (1) video object only.

Profiles and Levels Defined

A profile can be thought of as a grouping together of different algorithms,
specifying what your video codec can and cannot do. A level, on the other
hand, specifies how much your codec can do. A level, for example, may restrict the
computational complexity within a profile, specifying the bitrate constraints on
a video or audio stream. Both profiles and levels are stored within an MPEG-4
file, so that the playback device “knows” whether or not it can in fact play back
the file.

New Video Codec for MPEG-4 33
© Apple Computer, Inc July, 2002

34

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

ISMA Profile 0

s MPEG-4 Video Simple Profile
m 176 x 144 at 15 fps and 64 kbps

ISMA Profile 1

= Simple or Advanced Simple Profile

» 352 x 288 at 30 fps and 1.5 Mbps

3GPP (Third Generation Partnership Project)

= Similar to ISMA Profile 0

= Designed for wireless handheld devices

Gamma Correction

In QuickTime 6, the MPEG-4 video codec performs gamma correction, so that
MPEG-4 files look the same when they are displayed on both Macintosh and
Windows computers. An MPEG-4 video stores both gamma and color space
information, while the video codec performs per-platform gamma correction.

Additional Dialog for MPEG-4 Video Compression

Figure 9 shows a Compression Settings dialog in Mac OS X (available in
QuickTime Player Pro) that provides MPEG-4 Video as a selectable choice for
the content author or end user. The dialog also provides two selectable
compression types: Faster and More Accurate.

New Video Codec for MPEG-4
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Figure 9 The Compression Settings with MPEG-4 Video as a selectable item for
the content author

COMpressian Settings

MPEC-4 Videa FF

| Cuakiry
=

Leask Lirves MFﬂlulﬂi High Beyf

| Compression Type:
® Faster Compression
) Morg Accurate Compression

Watian
Frames pir secord ﬁ
ﬂll:n' frame svery frames
E. Lirmit dats fatE 1o 90 | K Bytes | f&c
f Cancet % 0K)
Summary

For developers, some important points to keep in mind about QuickTime 6
support for MPEG-4:

= MP4 files can be opened by any application that uses the standard
QuickTime calls.

= Any application can create MP4 files by using the standard QuickTime
export calls.

= MPEG-4 codecs behave like other QuickTime codecs.

New Video Codec for MPEG-4 35
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

MPEG-4 Audio Support

36

QuickTime 6 plays audio files of AAC and handles ISMA profile levels 0 and 1,
with the exception of CELP audio. In the current release both encode and
decode of AAC are supported. (Note that encode is AAC [Low Complexity]
only.) QuickTime 6 conforms to the MPEG-4 audio specification.

QuickTime 6 audio can handle reading in MP4 files, and can export them to
QuickTime movies.

A few current limitations:
= Audio can only handle ISMA Profile 0 and Profile 1 for AAC.

= Audio cannot handle multichannel AAC.

Defining AAC

The characteristics of AAC include
= Perceptual audio codec, similar to MP3
= Multichannel capability

= “Indistinguishable” audio quality—that is, you can take an encoded file and
the source from the encoded file and you should not be able to tell the
difference over a stereo system. From a CD source:

o AAC Low Complexity requires 96 kbps per channel.
o MP3 requires at least 128 kbps per channel.

QuickTime AAC Encoder

The characteristics of the QuickTime AAC encoder include
s AAC-Low Complexity
= Acceptable source

o 44.1 kHz or 48 kHz. It is recommended that when encoding audio, your
source should be an even multiple of those numbers.

o Mono or stereo

MPEG-4 Audio Support
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

= Output

o Mono: 16 to 256 kbps
o Stereo: 16 to 256 kbps
o The sample rate is automatically scaled to the bitrate.

IMPORTANT
The output sample rate is linked directly to the output
bitrate and number of channels. Note that the listed sample
rates are input sample rates. Using QuickTime, the encoder
can take any sample rate that QuickTime can play. But no
matter what sample rate you happen to provide, that rate
will be converted to the selected sample rate before it is fed
to the encoder. Thus, it is best to provide a sample rate that
divides evenly into the selected sample rate. For example, if
you have a 22.050 kHz source, select 44.1; if you have a 16
kHz source, select 48.

Table 1 is a mapping of the input sample rate + output bitrate +
output number of channels to output sample rate.

MPEG-4 Audio Support
© Apple Computer, Inc July, 2002

37

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Table 1 A mapping of the input sample rate + output bitrate + output
number of channels to output sample rate

Output sample rate Output sample rate

Input sample rate Output bitrate (one channel) (two channels)
48000 8000 8000 none defined

16000-20000 16000 8000

24000-28000 22050 11025

32000 32000 16000

40000, 480000 32000 22050

56000 32000 24000

64000, 80000, 96000, 48000 32000

112000

128000+ 48000 48000
44100 8000 8000 none defined

16000, 20000 16000 8000

24000, 28000 22050 11025

32000 32000 16000

40000, 48000 32000 22050

56000 32000 24000

64000, 80000, 96000, 44100 32000

112000

128000+ 44100 44100

Note
Future implementations may have different bitrate and
sample rate mappings.

You are best advised to provide content in these sample rates, regardless of the
target bitrate. If you already have content in a different sample rate, however, it
is not a problem. QuickTime will perform the necessary Sample Rate
conversion.

QuickTime AAC Decoder

The characteristics of the QuickTime AAC decoder include

38 MPEG-4 Audio Support
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

= AAC Low Complexity

o 8to 320 kbps
o 8to48 kHz
o Mono or stereo

= ISMA Profile 0, 1 compliant

Native MPEG-4 Streaming

QuickTime 6 provides support for native MPEG-4 streaming. Standard hinted
MPEG-4 files can be served directly, without converting to .mov files.

For authoring in QuickTime 6, there are new packetizers and reassemblers, one
for audio and one for video. These are used to take a .mov or .mp4 and produce a
hinted .mov, or a hinted .mp4. (MP4 files have in them a definition of hint tracks,
which is the QuickTime version of hint tracks.) Authors can then take this
movie and place it on a Streaming Server. The MPEG-4 file format includes hint
tracks which are the same as native QuickTime hint tracks.

Using QuickTime Streaming Server 4—Apple’s streaming media server—for
example, you can serve 1SO-compliant hinted MPEG-4 files to any
ISO-compliant MPEG-4 client, including any MPEG-4 enabled device that
supports playback of MPEG-4 streams over IP. You can also serve on-demand
or live MPEG-4 streams, and reflect playlists of MPEG-4 files.

Note that QuickTime 6 does not support interleave for RTP audio packing.

MPEG-4 and Web Developers

This section discusses the various ways that you can use MPEG-4 in QuickTime,
as well as how to create, compress, and play MP4 files on the Web. It also
provides an example of how to embed an .mp4 file in a Web page so that it will
be played only by QuickTime. The section concludes with a discussion of some
of the issues involved in creating ISO-compliant MP4 files to ensure that they
are interoperable with players other than QuickTime.

Native MPEG-4 Streaming 39
© Apple Computer, Inc July, 2002

40

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

If you are a developer who creates websites, website authoring tools, or
QuickTime movies intended for distribution over a network or the Internet, you
will want to read this section.

Ways To Use MPEG-4 In QuickTime

There are three different ways you can use MPEG-4 in QuickTime.

1. You can create QuickTime movies (.mov) that use the MPEG-4 video and/or
audio codecs. These are not .mp4 files, and MP4 players will not play them.
They are QuickTime movies and they require QuickTime 6 or later to play.

2. You can create MPEG-4 files (.mp4) that are ISO-compliant. These are MP4
files. They are not QuickTime movies. All ISO-compliant players should be
able to play these files with no difficulty. QuickTime Player is an
ISO-compliant player and can play ISO-compliant MP4 files created on any
platform.

3. You can create MPEG-4 files (.mp4) that are not ISO-compliant. These MP4
files may not play on other MP4 players, but they will play in QuickTime 6.
(For more information about issues involving ISO compliance, see the section
“ISO Compliance” (page 45).)

QuickTime 6 allows you to create both fast-start and streaming versions of your
movies in both .mov and .mp4 format. Movies that use MPEG-4 codecs can be
hinted for streaming, exported to .mp4 files, or both, without recompressing the
audio or video.

Why Use MPEG-4 On The Web?

MPEG-4 is an 1SO standard supported by a wide range of companies in a
variety of industries, as discussed in the section “Support for MPEG-4" (page
17). This means that an MPEG-4 file can be played by many different players in
addition to QuickTime, not only on personal computers, but also on cell
phones, PDAs, and television set-top boxes. This is a huge step forward from
the current proprietary environment, which may lead you to deliver your
movies using different compressors and multiple formats—such as Real,
Windows Media, and QuickTime—just to serve your Mac and Windows
customers.

QuickTime movies compressed using MPEG-4 audio and video codecs can be
exported to MPEG-4 file format without recompression, allowing you to serve

MPEG-4 and Web Developers
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

your movies in multiple formats (.mov and .mp4) without sacrificing quality or
time.

At typical Internet data rates, the MPEG-4 simple video codec is comparable to
Sorenson3 video. This a good reason for using a codec in itself, but there are
other advantages. The MPEG-4 video codec scales very well at extremely low
bitrates, making it suitable for cell phones and PDAs with data rates even lower
than dialup modems. In addition, MPEG-4 video compression can be very fast,
making it suitable for live broadcasts and decreasing the time spent
compressing movies.

Note

The current release of QuickTime 6 includes only the
MPEG-4 simple video compressor. Higher quality and
lower bitrates can be expected from the advanced video
COMpressor.

MPEG-4 audio uses the Advanced Audio Codec (AAC), as discussed in the
section “MPEG-4 Audio Support” (page 36). This codec provides better quality
than mp3 audio at any given bitrate, or equivalent quality at a lower bitrate
(typically about 30% lower). At higher bitrates, AAC supports multichannel
surround-sound audio. Like MP3 before it, MP4 audio is a standard, so it is
entirely possible that devices currently supporting MP3 (MP3 players, CD
players, DVD players) will soon be available for MP4 as well. This is a premium
quality audio codec for ISDN data rates and above.

For low bandwidth audio suitable to dialup modems or portable wireless
connections, however, the QDesign2 music codec and Qualcomm Purevoice
codecs remain better choices.

The MPEG-4 specification includes a low bandwidth audio codec based on
CELP (codebook excited linear predictive) algorithms similar to the Purevoice
codec.

Note

The current release of QuickTime 6 supports AAC audio at
44.1 and 48 kHz in mono or stereo. It does not currently
support multichannel sound or other sampling rates for
AAC audio, as discussed in the section “Defining AAC”

(page 36).

MPEG-4 and Web Developers 41
© Apple Computer, Inc July, 2002

42

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Creating QuickTime Movies With MPEG-4 Compression

You can use the MPEG-4 audio and video compressors as you would any other
QuickTime codecs, as explained in the section “New Video Codec for MPEG-4"
(page 31). The MPEG-4 video and audio codecs are available in the standard
QuickTime compression dialog box.

From QuickTime Player, choose Export (File menu), Movie to QuickTime Movie
(pop-up menu), and click the Options button. Click the Settings button for
audio or video and choose MPEG-4 from the compressor list. There are a
variety of settings for audio and video, such as frame rate, quality, and data rate
limit. Click the Size button to change the pixel dimensions of the video track.
Click Okay, then Save.

Note
Movie export from QuickTime Player requires
QuickTime Pro.

Other applications that use the standard file compression dialog automatically
gain the ability to use MPEG-4 compression when you install QuickTime 6.

Creating .mp4 Files

To create .mp4 files from QuickTime Player, choose Export (File menu), Movie
to MPEG-4, (pop-up menu), and click the Options button. This opens a dialog
box with tabs for General, Video, Audio, Streaming, and Compatability. Use this
dialog box to select your MPEG-4 compression settings. These panels are
described and illustrated in the section “New Dialogs for Handling MP4 Files”
(page 25).

The General settings allow you to export audio, video, or both. You can make
some choices about audio and video compressor settings here as well.

One of your compression choices is Pass Through. Use this setting to export a
QuickTime movie with MPEG-4 compression to the .mp4 file format without
recompressing the data. This is a very fast operation and does not degrade
audio or video quality.

The Size menu gives you three choices in the current release
of QuickTime 6—Current, 320 x 240, and 160 x 120. If you need a
different frame size, you can resize the movie and choose Current.

MPEG-4 and Web Developers
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Note

In QuickTime Player, you can resize a movie by opening
the properties window (Movie menu, Get Movie
Properties), choosing a video track from the left pop-up
menu, and choosing Size from the right pop-up. Click the
Adjust button and resize the track by dragging with the
mouse (the properties pane shows the pixel dimensions as
you drag). Click the Done button when you have the
correct size. If there are multiple video tracks, resize the
largest track and repeat as necessary until all the tracks are
within the desired bounds.

The Video settings allow you to set a video bitrate limit, frame rate, and
keyframe rate.

The Audio settings allow you to set an audio bitrate limit and number of
channels.

Text at the bottom of each pane changes as you choose settings to help you
undertand the options and monitor ISO compliance. The Compatability pane
lets you override audio and video settings to ensure 1SO compliance. For more
information, see the section “ISO Compliance” (page 45).

The Streaming pane lets you create a fast-start or streaming .mp4. If you choose
streaming, QuickTime will add a hint track. You can choose this option with the
codecs set to Pass Through to turn a fast-start movie with MPEG-4 compression
into a hinted .mp4 without recompressing.

Note

Optimizing hints for server is no longer recommended. It
greatly expands the file size of the streaming movie, and
optimizations in the streaming server make it unnecessary.

You can stream .mp4 files using the QuickTime Streaming Server (version 4 or
later), the Darwin Streaming Server (version 4 or later), or any 1SO-compliant
streaming server. QuickTime 6 can also play MP4 streams from any
ISO-compliant source.

Playing .mp4 Files in QuickTime

Double-clicking .mp4 files from the desktop may launch QuickTime Player, or it
may launch some other application that is registered for .mp4 files on your
computer.

MPEG-4 and Web Developers 43
© Apple Computer, Inc July, 2002

44

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Files created on the Mac OS have a creator code as well as a file type, so the
operating system will usually call QuickTime Player for an .mp4 file created
locally on a Mac. This creator code is normally lost, however, if a file is stored
on Windows or Unix file systems, something which commonly occurs when a
file is transferred over the Internet.

To deliver .mp4 files over the Internet, your Web server needs to be configured
for the .mp4 MIME type (video/mp4). Once this is done, a browser will play
.mp4 files using the plug-in or ActiveX control registered for video/mp4. If you
post your .mp4 file to the Web and attempt to view it using QuickTime, an error
stating that “This is not a file that QuickTime understands,” or an attempt to
display the file as text, generally indicates that the Web server is not configured
for the mp4 MIME type.

Note

For audio-only .mp4 files, the optional MIME type audio/
mp4 can be used. These files can also use the video/mp4
MIME type, however.

To embed an .mp4 file in a Web page so that it will be played only by
QuickTime, use both the 0BJECT tag—specifying the QuickTime ClassID and
Codebase—and the EMBED tag, with SRC set to a QuickTime MIME type—such as
.qtif or .pntg—and QTSRC set to the .mp4 file, as shown in the following
example.

Example: Playing .mp4 files over the Web

<OBJECT

CLASSID="cl1sid:02BF25D5-8C17-4B23-BC80-D3488ABDDCEB"
CODEBASE="http://www.apple.com/qtactivex/qtplugin.cab"
WIDTH="320" HEIGHT="256" >

<PARAM NAME="src" VALUE="My.mp4" >
<PARAM NAME="autoplay" VALUE="true" >

<EMBED SRC="QTMimeType.pntg" TYPE="image/x-macpaint"

PLUGINSPAGE="http://www.apple.com/quicktime/download"
QTSRC="My.mp4" WIDTH="320" HEIGHT="256"
AUTOPLAY="true" >

MPEG-4 and Web Developers
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

</EMBED>

</0BJECT>

Note

This is the same technique you would use to be sure that
any non-QuickTime file (such as an .mp3 or .aiff file) is
played by the QuickTime browser plug-in.

The 0BJECT tag works with Internet Explorer 4 and later on Windows. The
Class1D specifies the QuickTime ActiveX control, and the Codebase tells Explorer
where to find the ActiveX control if it is not installed. The PARAM tag with
name="src" has the URL of your MP4 file as its value.

The EMBED tag works with all other Windows browsers and all Mac browsers
including Internet Explorer. The SRC parameter is set to a file whose MIME type
is used exclusively by QuickTime, such as .pntg (image/x-macpaint) or .qtif
(image/x-quicktime). You can also use .mov (video/quicktime). This file must
exist and is downloaded by the browser, but it is not displayed. The browser
uses the QuickTime plug-in to handle any file of this MIME type.

The PLUGINSPAGE parameter tells the browser where to find the QuickTime
plug-in if it is not installed. The QTSRC parameter holds the url of your MP4 file,
and this is what QuickTime plays.

ISO Compliance

The MPEG-4 specification is more than just a video codec or an audio codec. It
defines a rich set of multimedia, including such things as text and facial
animation, as discussed in the section “Support for MPEG-4" (page 17).

No software is currently able to display all the different media described in the
MPEG-4 specification. Consequently, MPEG-4 defines profiles (discussed in the
section “Profiles and Levels Defined” (page 33), which describe the subset of
MPEG-4 features a particular player supports, and the feature set a particular
movie requires.

A Profile 0 player, for example, can play simple MPEG-4 video at speeds up to
64 kbit/second, and AAC audio at 44.1 and 48 kHz in mono or stereo. A Profile
0 movie does not require any other features for correct playback. A Profile 0
player can play any Profile 0 movie.

MPEG-4 and Web Developers 45
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

A Profile 1 player has a larger required feature set that includes everything in
Profile 0 as well as features such as multichannel sound and higher bitrate
video.

If an MP4 movie uses even one feature of theProfile 1 set (that is not also part of
the Profile 0 set), it is a Profile 1 movie, because it requires a Profile 1 player for
reliable playback.

If an MP4 player is missing even one feature required for Profile 1, it is a Profile
0 player, even though it may be able to play many Profile 1 movies.

QuickTime 6 is a Profile 0 player. It can play any Profile 0 movie. QuickTime 6
also has some features of a Profile 1 player, such as the ability to handle higher
bitrate video, but it does not have the full Profile 1 feature set and cannot play
all Profile 1 movies.

QuickTime can create and play Profile 0 movies that use video at higher bitrates
than 64 kbit/second. If you know your movie will be played by QuickTime, you
may want to take advantage of the higher bitrates available, but be aware that
this produces files which are not ISO-compliant. Other Profile 0 players may not
be able to play these files, even though QuickTime can.

To ensure interoperability with other players, use only ISO-compliant MP4 files.

RTSP Instant-On Enhancement to Streaming

46

QuickTime 6 introduces a new feature in streaming: Instant-On. This feature
provides broadband users with quick access to streaming content, thus
reducing the wait before playback. Users with a broadband connection can
“scrub” through on-demand streams in real-time by using the time slider. The
playback is updated instantaneously, allowing you to locate precisely the
content that you want to view in a QuickTime movie.

This feature enables the nearly instantaneous start of streamed movies when the
available network bandwidth significantly exceeds the data rate of the target
media.

Users can enable this feature in the QuickTime Settings control panel (shown
below). The slider varies the amount of pre-buffering that QuickTime will do
from a maximum of 2x the movie data rate to a minimum of very little
pre-buffering.

RTSP Instant-On Enhancement to Streaming

© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

38 QuickTime -
,1 '-' ﬂ Instant-Om staris pleying streamed media wiifowd delay, bod
Sezear All Displ PEEwOrk congeszion may feduce the guaicy of playback.
A # Enable Instant-On A
— .
May siimammi
§ o
Immaidizisk Mt Delay pe
: o)

i
to aflow playback of multiple streams simultaneous®y, This may
degrade peformance ¥y avallable Bandwehh i3 excesded
T Instani-On b] f Transport Setup.

{ About QuickTime. .. { Registration .. Y

User Interface Changes

There are some minor changes to the QuickTime Player user interface that are
introduced in QuickTime 6, as discussed in this section. These include the
following:

User Interface Changes
© Apple Computer, Inc July, 2002

48

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

= The Channel button (below) that was marked “TV” in previous versions of
QuickTime is now marked with a “Q”.

= The Hot Picks movie and the Channel pane have a new layout (below), with
channel categories on the left and a movie on the right. The list of channel
categories is now dynamic.

Full Stream Ahead.

QuickTeme Streaming Server 4
redefines the industry standard
for digital media

Lick hiave (o downinad

WS e M Fick s n

User Interface Changes

© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

= The Favorites pane is no longer an alternate for the Channel pane. It is now a
stand-alone panel (shown below). Instead of icons, favorite movies are
shown as a list of file names or URLSs.

e 0 Favorites
{3 My Dog.mov

{3 Sailing.mov

{3 Rock Climbing.mov
{1 OTWeb.mov

A
S ——

= The Favorites panel can be accessed only from the Favorites menu. There is
no longer a heart icon to switch between Channels and Favorites. Both can
now be displayed simultaneously if the user wishes.

= There is a new menu item in QuickTime Player. Under File, there is now an
Open Recent > selection, with a submenu of the last 10 movies.

These changes should not affect programmers working with QuickTime at the
API level.

JPEG 2000 Support

QuickTime 6 includes support for JPEG 2000, a high-quality, still-image
compression and image coding standard that uses state of the art compression
techniques based on wavelet technology. QuickTime 6 provides support for
encoding, decoding, import, and export to the format.

The JPEG 2000 standard is based on discrete wavelet transform (DWT), scalar
gquantization, context modeling, arithmetic coding and post-compression rate
allocation. The standard lends itself to a variety of uses, ranging from digital
photography to medical imaging to advanced digital scanning and printing.

For more information on the JPEG 2000 standard for still image coding, refer to

JPEG 2000 Support 49
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

http://www.jpeg.org/JPEG2000.htm
Most notably, JPEG 2000 provides high compression efficiency—in many cases,
visually lossless compression at 1 bit per pixel or better.

Note that for this release of QuickTime 6, JPEG 2000 is only supported in
Mac OS X.

Flash 5 Support

50

QuickTime 6 includes several new and updated components related to
Macromedia Flash support in QuickTime. The Flash media handler and the
Flash movie importer have been updated, and a new Flash Properties panel has
been added to the QuickTime Player info panels.

New Flash Media Handler

The new Flash media handler supports Macromedia Flash files (also known as
SWEF files) that conform to Flash 5 versions and earlier of the SWF specification.
(Previous releases of QuickTime supported files that conformed to Flash 4 and
earlier.) You should refer to Macromedia’s documentation for a complete listing
of the features added to Flash 5. The most significant additions include

= greatly expanded ActionScript capabilities
= HTML text rendering
» XML data exchange

All these features work properly under the new Flash media handler—with a
few limitations. (Refer to the QuickTime 6 Release Notes, which specify those
limitations.)

SWF files opened by QuickTime-savvy applications are converted to QuickTime
movie files by the Flash movie importer, discussed in the next section. These
movie files consist of a single Flash track, whose media data is simply the data
in the original SWF file. Virtually all of these movie files play back in
QuickTime Player, in other QuickTime-savvy applications, or in the QuickTime
browser plug-in exactly as if the original SWF file had been opened using the
Flash Player application or the Flash browser plug-in.

Flash 5 Support
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Flash Movie Importer

The new Flash movie importer is “smarter” than the previous importer in
several ways. The principal change is that the new importer scans some or all of
the Flash file being imported to try to determine whether the file is set to
automatically start playing when it is opened. (Previous importers assumed
that all imported SWF files should be autoplayed.) Several other settings are
unchanged from earlier versions of the Flash importer: the play-all-frames
option is set to TRUE and the looping flag is set to FALSE.

New Flash Properties Info Panel

Flash tracks can be combined with other kinds of tracks in a QuickTime movie
file. This is especially useful when using controls in the Flash track (buttons,
sliders, etc.) to control the playback and settings of other tracks (video tracks,
sound tracks, VR tracks, etc.)

In this situation, the content author needs to be aware of a new consideration
that did not arise in earlier versions of the Flash media handler: version 5
ActionScripts can read the position of the cursor and/or the state of the mouse
button at any time. This means that some ActionScripts may respond to mouse
button clicks even if those clicks do not occur on some interactive element in the
Flash track. If the Flash media handler accepts and processes all clicks in the
track rectangle, then those clicks cannot be passed to tracks layered behind the
Flash track. This effectively prevents the user from interacting with sprite tracks
and QuickTime VR tracks layered behind the Flash track.

The new Flash media handler allows a movie author to decide on a per-track
basis whether all mouse button clicks are accepted and handled by that
particular instance of the Flash track or whether clicks that are not on an
interactive element in the track are passed to tracks layered behind it. The
setting for a specific Flash track can be adjusted using the new “Flash
Properties” info panel in QuickTime Player, shown in Figure 10.

This panel contains a single check box labeled “Mouse Capture Enabled”. If the
box is checked, then all mouse clicks are directed to the Flash track (unless some
track in front of the Flash track processes the click); if the box is unchecked, only
mouse button clicks on interactive elements in the Flash track are processed.

Flash 5 Support 51
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Figure 10 The Flash Properties info panel in Mac OS X in QuickTime Player with
Mouse Capture Enabled box checked

52

& B SrakE. moy FropEries

Flash Track T‘ Progerties T'l

? Mg Capture Enabben

When a Flash file is imported as a movie with a single Flash track,
mouse-capturing is enabled for that track. If you combine that track with other
tracks, you may need to adjust the mouse capture setting to achieve the proper
user experience.

Controlling Mouse Capturing Setting

The mouse capture setting of a Flash track is stored in the media properties
atom of the track.

The Movies.h header file contains the constant
kFlashTrackPropertyAcceptAl1CTicks to identify the atom type; the atom data is
a Boolean value, where TRUE means to accept all mouse button clicks and FALSE
means to accept only those mouse button clicks on an interactive element in the
Flash track.

The following snippet of code sets a Flash track to accept all clicks:

QTAtomContainer trackProperties = NULL;
Boolean acceptAll1Clicks true;

Flash 5 Support
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

GetMediaPropertyAtom(flashMedia, &trackProperties);
if (trackProperties != NULL) {
QTInsertChild(trackProperties, 0,
kFlashTrackPropertyAcceptAl1Clicks, 1, 1,
sizeof(acceptAll1Clicks), &acceptAllClicks, nil);

SetMediaPropertyAtom(flashMedia, trackProperties);

QTDisposeAtomContainer(trackProperties);
}

New APIs for Tasking QuickTime

QuickTime 6 introduces a new tasking mechanism designed to improve
application performance and operation.

Periodically, applications have to give time to QuickTime by calling such
routines as MCIsPlayerEvent(), MCIdle(), MoviesTask(), Or TaskMovie().
Typically, QuickTime developers ask the question, how often should I call a
particular routine? The answer most frequently given is, 10 to 20 times per
second. This works in most cases. But in many other cases, while an application
is tasking QuickTime 10 or 15 times per second, half the time QuickTime does
not really need to be called, and the application will just be sitting there,
spinning. As a consequence, there is an inefficient use of processor time.

In QuickTime 6, a new group of APIs are provided that improve QuickTime
tasking from an application’s point of view. These are

m QTGetTimeUntilNextTask()

m QTInstallNextTaskNeededSoonerCallback()

m QTUninstallNextTaskNeededSoonerCallback()

For example, where an application once did this

while (true) {
WaitNextEvent(..., &event, 2, ...); // if no event pending, return a
// null event after
// 2/60 of a second
MCIsPTayerEvent(mc, &event);

New APIs for Tasking QuickTime 53
© Apple Computer, Inc July, 2002

54

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

it can now do something like this

UInt32 t;
while (true) {

QTGetTimeUntilNextTask(&t, 60); // how long in 60ths of a second?
WaitNextEvent(..., &event, t, ...);
MCIsPlayerEvent(mc, &event);

QTGetTimeUntilNextTask isa new API that lets you pass in a scale—for example,
1/60 of a second or 1/1000 of a second—and returns a duration, that is, the
number of 60ths or 1000ths (whatever you ask for) until the next time
QuickTime needs to be called.

For example, as shown in the code snippet above, on Mac OS 9 you would call
QTGetTimeUntilNextTask, passing in 60 because WaitNextEvent () wants ticks. It
will tell you how many 60ths of a second until QuickTime needs to be called
again. WaitNextEvent () will not return either until that amount of time has gone
by, in which case it will give you a NULL event, or an event took place, in
which case it will give you that event.

On Mac OS X, the recommended way to do this on a Carbon application is to
use the Carbon event loop timer, as discussed in the section “New Carbon
Movie Control” (page 69). This is a timer routine that you set up to be called
periodically from the Carbon event loop. You set a duration for how often you
want it to happen.

The following code snippet shows how you can use both QuickTime’s new
tasking mechanism and the Carbon event loop timer code. It also shows how to
use the new QTInstallNextTaskNeededSoonerCallback() API.

MyMovieldlingTimer() is installed by the sample routine
InstallMovieldlingEventLoopTimer() shown in the code snippet below. This
routine performs the actual work of idling the movies and/or movie controllers
that the application has in use.

static void MyMovieldlingTimer(EventLoopTimerRef inTimer,
void *inUserData)

0SStatus error;

New APIs for Tasking QuickTime
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

long durationInMillis;
MyStatePtr myState = (MyStatePtr)inUserData; // Application's state
// related to its 1list of movies

You insert the code here to idle the movies and/Zor movie controllers that the
application has in use—for example, calls to MCIdle().

// Ask the idling mechanism when we should fire the next time.
error = QTGetTimeUntilNextTask(&durationInMillis, 1000);
// 1000 == millisecond timescale

if (durationInMillis == 0) // When zero, pin the duration
// to our minimum
durationInMillis = kMinimumIdleDurationInMillis;

// Reschedule the event loop timer

SetEventLoopTimerNextFireTime(myState->theEventTimer,
durationInMillis *
kEventDurationMillisecond);

TaskNeededSoonerCallback() is installed using the new
QTInstallNextTaskNeededSoonerCallback() to enable QuickTime to

awaken the application in order to reschedule some idle time between calls to
the event timer function.

static void TaskNeededSoonerCallback(TimeValue duration,
unsigned long flags,
void *refcon)

SetEventLoopTimerNextFireTime((EventLoopTimerRef)refcon,
duration * kEventDurationMillisecond);

The InstallMovieldlingEventLoopTimer () function performs the actual
installation of the Carbon event loop timer function. This is called once when
the first movie is opened. It also installs a TaskNeededSooner callback that the
Idle Manager calls when QuickTime needs your attention.

New APIs for Tasking QuickTime 55
© Apple Computer, Inc July, 2002

56

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

static 0SStatus InstallMovieldlingEventLoopTimer(MyStatePtr myState)

{
0SStatus error;

Note that myState is a structure the application maintains to “remember” the
event loop timer reference, as well as the list of movies or movie controllers that
it will need to idle.

error = InstallEventLoopTimer(
GetMainEventLoop(),
0, // firedelay
kEventDurationMillisecond * kMinimumIdleDurationInMillis,

// interval
NewEventLoopTimerUPP(MyMovieldlingTimer),
myState, // This will be passed to us when
// the timer fires

&myState->theEventTimer);

if (lerror)
// Install a callback that the Idle Manager will use when
// QuickTime needs to wake me up immediately
error = QTInstallNextTaskNeededSoonerCallback(
NewQTNextTaskNeededSoonerCallbackUPP(TaskNeededSoonerCallback),
1000, // Millisecond timescale
0, // No flags
(void*)myState->theEventTimer); // Our refcon, the
// callback will
// reschedule it

return error;

As shown in the above code snippet, when QuickTime decides that the next
task is needed sooner, it will call the QTInstal1NextTaskNeededSoonerCallback
routine. Using that routine, you can reschedule your Carbon event loop timer.
This callback proc may be called from interrupt-time or called from another
thread on Mac OS X. You can call the Carbon API to reschedule the Carbon
event loop timer. When you install the callback, you tell it what scale you like,
and then when the callback comes, QuickTime will pass you a duration.

New APIs for Tasking QuickTime
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Often when you ask QTGetTimeUntiTNextTask, it will return you a 0, which
means it needs to be tasked right away. It’s not recommended that you pass a 0
into WaitNextEvent (), for example, because what will happen is that you will
completely swamp the CPU. Passing in a 1 to WaitNextEvent() is a good
minimum.

QTGetTimeUntilNextTask

DISCUSSION

Provides the time in specified units, until QuickTime next needs to be called.

0SErr QTGetTimeUntilNextTask (long * duration,

long scale);
duration A pointer to the returned time to wait before tasking QuickTime
again.
scale The requested time scale.

return value Error code (for example, paramErr or
movieToolBoxUninitialized).

Using this routine, you pass in the scale that you’re interested in, whether it is a
60th of second (scale=60), or a 1000th of second (scale=1000). This call then
returns a duration that specifies how long you can wait before tasking
QuickTime again. In Mac OS X, with the Carbon event loop timer, you generally
pass in 1000 and get milliseconds in return, and then schedule your Carbon
event loop timer.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

New APIs for Tasking QuickTime 57
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

QTlInstallNextTaskNeededSoonerCallback

DISCUSSION

Installs a callback that is called when QuickTime changes its mind about when
it next needs to be tasked.

QTInstallNextTaskNeededSoonerCallback
(QTNextTaskNeededSoonerCallbackUPP callbackProc,
TimeScale scale,
unsigned long flags,
void * refcon);

callbackProc A callback procedure.

scale The time scale of the duration that will be passed to the callback.
flags Unused. Must be zero.
refcon A reference constant.

This routine installs a callback procedure that specifies when QuickTime next
needs to be tasked. The callback procedure may be called from interrupt-time or
on Mac OS X from another thread, so you must be careful not to do anything
that might cause race conditions. You can call the Carbon API to reschedule the
Carbon event loop timer from another thread.

You specify what scale you like, and when the callback is returned, it will pass
you a duration.

Note that you can install or uninstall more than one callback procedure if
necessary.

All callbacks will be called in sequence. You can also install the same callback
multiple time with different refcons. It will be called once with each refcon
value.

VERSION NOTES

58

Introduced in QuickTime 6.

New APIs for Tasking QuickTime
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

PROGRAMMING INFO
C interface file: Movies.h

Carbon status: Supported

QTUninstallNextTaskNeededSoonerCallback

Uninstalls your NextTaskNeededSooner callback procedure.
QTUninstallNextTaskNeededSoonerCallback
(QTNextTaskNeededSoonerCallbackUPP callbackProc,

void * refcon);

callbackProc A callback procedure.

refcon A reference constant.

DISCUSSION

This routine takes a callback procedure and your reference constant, so that you
can uninstall one instance of a callback you have installed more than once with

different refcons.

VERSION NOTES
Introduced in QuickTime 6.

PROGRAMMING INFO
C interface file: Movies.h

Carbon status: Supported

New APIs for Tasking QuickTime
© Apple Computer, Inc July, 2002

59

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

The Idle Manager APIs

60

QuickTime 6 introduces a new group of Idle Manager APIs that let media
handlers, data handlers, and movie importers report their various QuickTime
idling needs. These new APIs, discussed in this section, include

m (QTIdleManagerSetNextIdleTime

m QTIdleManagerSetNextIdleTimeNow

m (QTIdleManagerSetNextIdleTimeNever

m (QTIdleManagerSetNextIdleTimeDelta

m MCSetlIdleManager

m MovielmportSetIdleManager

m DataHSetIdleManager

m MediaGGetIdleManager

m MediaGSetIdleManager

The Idle Manager introduced in QuickTime 6 is an opaque object that your
component can make calls against.

In QuickTime 6, there are three types of components can get handed an Idle
Manager object: media handlers, data handlers, and movie importers (but only
certain types). Using these Idle Manager routines, components can specify
when they need to be idled.

To work with the Idle Manager object, you have to implement the appropriate
SetIdleManager component APIs, so that your component can be handed an Idle
Manager. When you are handed an Idle Manager, you will need to tell the Idle
Manager when you next need to be idled.

What does, when | next need to be idled, really mean? It means, if you idle me
before this time, | will do no work, so don’t bother. It’s a hint, not explicit
instructions. If you don’t tell it anything different, then you’ll continue to be
idled all the time because it still thinks you need one back then, which is now.

Note that media handlers also need to implement a GetId1eManager routine.

The Idle Manager APIs
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Derived Media Handlers

Derived media handlers are so called because they derive much of their
functionality form the base (or generic) media handler. Historically, derived
media handlers have requested idles from the generic media handler by means
of flags passed to MediaSetHandlerCapabilities. There are three basic modes the
derived media handler can request:

1. Don’tidle me (noldle).
2. Idle me once per sample in my track (0). No flags are set.
3. Idle me all the time (noScheduler, wantsTime, or both).

These modes can be changed at any time by calling
MediaSetHandlerCapabilities again.

Derived media handlers that only use modes 1 and 2 don’t need to do anything
with Idle Management. All their Idle Management will be handled for them by
the generic media handler. They should not implement MediaGSetId1eManager or
MediaGGetIdleManager.

Derived media handlers that currently use mode 3, but would like the ability to
throttle back the idle rate, should implement MediaGSetIdleManager and
MediaGGetIdleManager. They can then use various Idle Manager routines to tell
QuickTime when they would like to be idled next.

MediaGGetldleManager

DISCUSSION

Retrieves the Idle Manager object from a derived media handler.

MediaGGetIdleManager (MediaHandler mh,
IdleManager * pim);

mh A media handler component instance.

pim A pointer to an idle manager that the media handler will fill in.

This routine must be implemented by a derived media handler that wants to
report its idling needs.

The Idle Manager APIs 61
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: MediaHandlers.h

Carbon status: Supported

MediaGSetldleManager

DISCUSSION

Gives an ldle Manager object to a derived media handler, so it can report its
idling needs.

MediaGSetIdleManager (MediaHandler mh,
IdleManager im);

mh A media handler component instance.

im An idle manager.

This routine must be implemented by a derived media handler that wants to
report its idling needs.

After receiving an idle manager by means of the above calls, a derived media
handler can call the following routines to tell QuickTime when they need to be
idled next:

m (QTIdleManagerSetNextIdleTime

m (QTIdleManagerSetNextIdleTimeNever

m (QTIdleManagerSetNextIdleTimeNow

m (QTIdleManagerSetNextIdleTimeDelta

VERSION NOTES

62

Introduced in QuickTime 6.

The Idle Manager APIs
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

PROGRAMMING INFO

C interface file: MediaHandlers.h

Carbon status: Supported

Three Useful Idle Manager Calls

There are three useful Idle Manager calls you should consider:

1. QTIdleManagerSetNextIdleTimeNow, which specifies that your component
needs an idle now. The only parameter is your Idle Manager.

2. QTIdleManagerSetNextIdleTimeNever, which puts your component into a
mode where you’re not going to need any idles until further notice. Don’t
idle me.

3. QTIdleManagerSetNextIdleTimeDelta, which says | need to be idled this
amount of time from now. This will get you one idle. If you don’t tell it
anything different, then you’ll continue to be idled all the time because he
still thinks you need one back then, which is now. Every time you get idled,
you need to tell it again when your next idle needs to be. This call will you
tell it how long when you pass in a duration, but then you have to tell it what
the units of that duration are.

QTIdleManagerSetNextldleTimeNow

DISCUSSION

Specifies that your component needs to be idled now.
QTIdleManagerSetNextIdleTimeNow (IdleManager im);

im An idle manager.

This routine specifies that the calling component needs to be idled right away,
that is, continuously, until further notice.

The Idle Manager APIs 63
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

VERSION NOTES
Introduced in QuickTime 6.

PROGRAMMING INFO
C interface file: Movies.h

Carbon status: Supported

QTIldleManagerSetNextldleTimeNever

Specifies that your component will not need to be idled until further notice.
QTIdleManagerSetNextIdleTimeNever (IdleManager im);

im An idle manager.

DISCUSSION
This routine specifies that your component should not be idled.

VERSION NOTES
Introduced in QuickTime 6.

PROGRAMMING INFO
C interface file: Movies.h

Carbon status: Supported

QTIldleManagerSetNextldleTimeDelta

Specifies that your component needs to be idled a certain amount of time from
now—for example, a quarter of second from now, or three seconds from now.

64 The Idle Manager APIs
© Apple Computer, Inc July, 2002

DISCUSSION

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

QTIdleManagerSetNextIdleTimeDelta (IdleManager im,
TimeValue duration,
TimeScale scale);

im An idle manager.
duration The time from now in the scale specified.
scale The time scale.

This routine lets you pass in a duration and a scale. For example, if you need an
idle a half second from now, you can pass in a duration of 500 and a scale of
1000, or a pass in a duration of 1 and scale of 2. In both cases, this is a half
second. Typically, developers will have a time scale they are used to working in,
such as milliseconds or 60ths of a second.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

General Purpose Idle Manager API

There is a more general purpose Idle Manager call for specifying absolute
wallclock time of the next required idle.

QTIdleManagerSetNextIdleTime can be called to do this, passing in a fully filled
out TimeRecord, using QuickTime’s wallclock timebase. Note that any derived
media handlers that use this call may need to do their computations in track
time, and then convert to wallclock time, using ConvertTime. The wallclock
timebase can be found by calling QTGetWal1ClockTimeBase.

The Idle Manager APIs 65
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

QTlIdleManagerSetNextldleTime

DISCUSSION

Specifies the next time to idle.

QTIdleManagerSetNextIdleTime (IdleManager im,
TimeRecord * nextldle);

im An idle manager.

nextldle A pointer to a TimeRecord containing the wallclock time when
the calling component would like to be idled.

If your component needs to call QTId1eManagerSetNextIdleTime, you need to do
wallclock time calculations, so you need to call QTGetWallClockTimeBase.

QTGetWallClockTimeBase (TimeBase * wallClockTimeBase)

In addition, you may need to call ConvertTime() in order to convert from track
time or media time to wallclock time, and ConvertTimeScale() in order to
convert to the timescale you like to work in.

After receiving an idle manager by means of the above calls, a data handler can
call the following routines to tell QuickTime when they need to be idled next:

m (QTIdleManagerSetNextIdleTime

m (QTIdleManagerSetNextIdleTimeNever

m (QTIdleManagerSetNextIdleTimeNow

m (QTIdleManagerSetNextIdleTimeDelta

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

66

C interface file: Movies.h

Carbon status: Supported

The Idle Manager APIs
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Data Handlers

Certain data handlers support scheduling reads in the future. These data
handlers implement DataHTask, so that they will have an opportunity to start
that read sometime later. These data handlers can throttle back the calls to
DataHTask by implementing DataHSetIdleManager, and using the Idle Manager
calls to say when they want to be idled next.

DataHSetldleManager

DISCUSSION

Gives an ldle Manager object to a data handler, so it can report its idling needs.

DataHSetIdleManager (DataHandler dh,
IdleManager im);

dh A data handler component instance.

im An idle manager.

This routine must be implemented by a data handler that wants to report its
idling needs.

After receiving an idle manager by means of the above calls, a data handler can
call the following routines to tell QuickTime when they need to be idled next:

m QTIdleManagerSetNextIdleTime

m (QTIdleManagerSetNextIdleTimeNever

m QTIdleManagerSetNextIdleTimeNow

m QTIdleManagerSetNextIdleTimeDelta

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

The Idle Manager APIs 67
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6
Carbon status: Supported

Movie Importers

In general, movie importers don’t get idled. Typically, a movie importer just
examines a file, scans it, and then creates a movie that will point at the file and
describe how to play it. The media data is in that file, but the movie itself is in
memory.

There is a special kind of movie importer component that remains open to do
further work after the movie is constructed. These importers implement
Movielmportldle. These “idling importers” can throttle back their idles by
implementing MovielImportSetIdleManager, and then using the IdleManager calls
to say when they want to be idled next.

MovielmportSetidleManager

DISCUSSION

Gives an ldle Manager object to a movie importer component, so it can report
its idling needs.

MovielmportSetldleManager (MovielmportComponent ci,
IdleManager im);

ci A movie importer component instance.

im An idle manager.

This routine must be implemented by a movie importer that wants to report its
idling needs.

VERSION NOTES

68

Introduced in QuickTime 6.

The Idle Manager APIs
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6
PROGRAMMING INFO

C interface file: QuickTimeComponents.h

Carbon status: Supported

New Carbon Movie Control

QuickTime 6 for Mac OS X introduces the Carbon Movie Control. This
mechanism makes the process of using QuickTime within a Carbon
Event-based application easier and faster. This is accomplished by using a
single API that can be shared among all such applications.

This API accepts a movie and a window and will construct a control containing
a standard movie controller. The control can then act as a Carbon Event target,
receiving Carbon Events and dispatching them to its movie controller. Using
this mechanism, an application does not need to use WaitNextEvent () and calls
toMCIsPlayerEvent(). In addition, the movie controller is automatically idled by
means of an event loop timer, using the Idle Manager to optimize idling
frequency.

Background

QuickTime movie playback APIs have traditionally been dependent on the
classic Macintosh application paradigm, i.e., the WaitNextEvent() loop. In this
loop, an application delegates events to a movie’s Movie Controller (if present)
and shares some of its idle time with QuickTime, which results in “idling” of
movies. In the cooperatively scheduled world of Mac OS 9 and earlier versions
of the Macintosh operating system, this scheme worked well.

In Mac OS X, however, a new application paradigm was introduced. This
paradigm depends on Carbon Events and associated handlers to communicate
user events to the application. Older models that rely on periodic polling are
replaced by the more “tunable” event loop timer mechanism, which enables an
application to have greater precision over the frequency of idling.

As a consequence, application developers may need to construct event handlers
for their windows to funnel events to their Movie Controllers and create event
loop timers to “idle” their movies.

New Carbon Movie Control 69

© Apple Computer, Inc July, 2002

70

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

How It Works—An Event Target

The Carbon Movie Control is implemented as a custom control, which installs
an event handler to handle the Carbon Events sent to controls. When a Carbon
Movie Control is created for a movie, a movie controller is also created. The
movie control then directs User Interface events to this movie controller.

The application can install event handlers on the Carbon Movie Control to
handle such things as contextual menu clicks or to intercept events to do special
processing. Control Manager calls can be made as well. For example, the
GetControlBounds() and SetControlBounds () functions can be used to obtain or
modify the control’s size and location.

Providing Time to Movies

The Carbon Movie Control’s custom control implementation takes care of all
event routing to the movie. In order to distribute time to these movies, an event
loop timer is set up which “idles” all movie controllers associated with Carbon
Movie Controls within the application. The frequency of this timer is set using
information it gets from the QuickTime Task Management APIs, discussed in
the section “New APIs for Tasking QuickTime” (page 53). Thus, the amount of
time devoted to movie processing is minimized.

Support for Editing

The Carbon Movie Control also supports basic movie editing features, such as
cut, copy, paste, and clear, and performs the work of updating the Edit menu,
enabling or disabling editing command items as appropriate.

Interface

The interface for the Carbon Movie Control feature is a single API routine:

0SErr CreateMovieControl (
WindowRef theWindow,
Rect *localRect,
Movie theMovie,
UInt32 options,
ControlRef *returnedControl);

New Carbon Movie Control

© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

theWindow The window in which the control is placed.

TocalRect The rectangle in the local coordinates of the window in which
the movie control is placed. If NULL is passed for 1ocalRect, the
movie control is positioned at 0,0 within the window and will
have the natural dimensions of the movie, plus height of the
movie controls, if visible. If the TocalRect has 0 height and
width (top == bottom, left == right) it is interpreted as an anchor
point and the top left point of the movie control will be located
at this position. Its height and width will be as in the NULL
rectangle case. For all other cases of rectangles, the movie
control is centered within the rectangle by default and will be
sized to fit within it while maintaining the movie’s aspect ratio.

theMovie The movie to be displayed within the movie control.
options A bitmask containing zero or more option bits:
kMovieControlOptionHideController

The movie controller is hidden when the movie
control is drawn.

kMovieControlOptionlLocateTopleft

The movie is pinned to the top left of the
localRect rather then being centered within it.

kMovieControlOptionEnableEditing

Allows programmatic editing of the movie and
enables drag and drop.

kMovieControlOptionHandleEditingHI

Installs event handler for Edit menu commands
and menu updating (also asserts
kMovieContro]OptionEnab]eEditing)

kMovieControlOptionSetKeysEnabled

Allows the movie control to react to keystrokes
and participate in the keyboard focus mechanism
within the window.

kMovieControlOptionManuallylIdled

New Carbon Movie Control 71

© Apple Computer, Inc July, 2002

DISCUSSION

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Rather than being idled by the movie control
event loop timer, this movie control is idled by
the application, manually.

returnedControl

This is the Movie Control, suitable for passing to Control
Manager APIs.

This routine returns an error if there is a problem with one of the parameters or
if an error occurred while creating the underlying movie controller or the
custom control itself. If an error is returned, the value of returnedControl is
undefined.

The control can be deleted by calling DisposeControl (). Note that the control is
automatically disposed of if the enclosing window is destroyed. Note, too, that
the underlying movie controller is disposed of when the control is deleted.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

72

C interface file: Movies.h
Supported on Mac OS X

Access to Underpinnings

Once a movie control is created, you can access its associated movie, its
underlying movie controller or change certain options using the
GetControlData() and SetControlData() routines.

The following are the selectors that can be passed to these control manager
functions:

kMovieControlDataMovieController

New Carbon Movie Control
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Use with GetControlData() to obtain the movie
controller. This allows the application access to
more features of QuickTime and finer control
over aspects of movie playback and editing.
IMPORTANT NOTE: Do not dispose of this movie
controller; it is owned by the movie control it is
associated with. You also must not use
MCSetControllerAttached() to detach the
controller from the movie.

kMovieControlDataMovie

AGetControlData() convenience to obtain the
movie associated with a movie control after its
creation.

kMovieControlDataManualIdling

Used with GetControlData() and
SetConrolData() to obtain and modify the state
of the movie control’s idling behavior. By
default, all movie controls are given time by the
movie control event loop timer. Setting this
Boolean item to TRUE will allow the application to
manually idle the movie using MCIdle().

Sprite API Changes

QuickTime 6 introduces a new group of APIs that enable software application
developers to request, display, and manage images that are hosted outside of
the Movie in which they are used.

Loading Images into a Sprite Track

Each sprite in a sprite track has an image associated to it. Typically, that image
is visible to the user when the movie is presented. A Sprite track can have a
number of images in it and you can assign another image to a sprite by setting
its image index.

Sprite API Changes 73
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

In general, many of the images that could be used in interactive Web content are
simultaneously being integrated into HTML, perhaps updated by server-side
scripts, created by art departments in larger production teams, or are simply not
available during the Movie authorship process. In earlier versions of
QuickTime, it was not possible for a movie author to manage the dynamic
loading and processing of sprite images. Images had to be integrated into the
movie when it was generated.

Now, in QuickTime 6, with two simple sprite track wired actions (discussed in
the section “New Sprite Actions” (page 83)), the movie author can load any
image format supported by QuickTime, either from a local or remote source,
and manage its display and persistence during the playback of a movie. Sprite
images, like sprites before them, now have two unique identifiers associated
with them to help movie creators manage many images over the course of a
movie’s lifetime, index and ID.

New Sprite APIs

The following APIs, discussed in this section, are new in QuickTime 6.

SpriteMediaNewlImage

74

Creates a new sprite image.

ComponentResult SpriteMediaNewImage (/] IV-2677
MediaHandler mh, /] IV-2677
Handle dataRef, // IV-2683

0SType dataRefType, // IV-2695
QTATomID desiredID);// IV-2675
mh The sprite media handler for this operation.

dataRef A pointer to the url dataRef or an alias that references the image
to be added to the sprite track.

dataRefType AFourCharCode describing the dataRef parameter. For example,
you can use URLDataHandlerSubType if the dataRef is a URL.

Sprite API Changes
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

QTAtomID A Tong used to request a unique ID identifier for the image. If
the requested ID is in use, the call fails. If a 0 is passed in,
NewlImage will assign the next available (incremental) integer
ID—which is usually the same as the next available index,
unless that ID has been previously assigned.

function result If successful, the new image can be used by the target sprite
track like any other sprite image. The image is referenced by the
next available image index, equal to the number of images in the
track before the call was made + 1, and by the ID that was
requested via parameter or was automatically assigned.

SpriteMediaDisposelmage

Frees the memory allocated for a new sprite image, and removes that image
from the track.

ComponentResult SpriteMediaDisposelmage (/] IV-2677
MediaHandler mh, /] IV-2677
short imagelndex);// 1V-2687

mh The sprite media handler for this operation.

imagelIndex The index of a sprite image previously acquired via a
SpriteMediaNewImage call.

Function Result: The image disposed of is no longer available to the sprite track,
and the image index location will remain “empty” for the duration of the
current key sample.

VERSION NOTES
Introduced in QuickTime 6.

PROGRAMMING INFO
C interface file: Movies.h

Carbon status: Supported

Sprite API Changes 75
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

SpriteMedialmagelndexTolD

Returns the ID of a particular image given the index of that image.

ComponentResult SpriteMedialmage (/] IV-2677
MediaHandler mh, /] IV-2677
short imagelndex,

QTAtomID *imagelD); // IV-2687
mh The sprite media handler for this operation.

imageIndex The index of a sprite image.
imagelD On return, a pointer to the ID of the image.

function result You can access Movie Toolbox error returns through
GetMoviesError (I1-505) and GetMoviesStickyError (1-506), as well
as in the function result. See Error Codes (1V-2718).

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

SpriteMedialmagelDTolndex

76

Returns the index of a particular image, given the ID of that image.

ComponentResult SpriteMedialmage (/] IV-2677
MediaHandler mh, /] IV-2677
QTAtomID imagelD, // 1V-2687

short *imagelndex);

mh The sprite media handler for this operation.

Sprite API Changes
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

imagelD The ID of a sprite image.
imageIndex On return, a pointer to the index of the image.

Function Result: If no image is found with a corresponding ID, the image index
returned will be 0.

VERSION NOTES
Introduced in QuickTime 6.

PROGRAMMING INFO
C interface file: Movies.h

Carbon status: Supported

Sprite Hit-Testing Mode

When a sprite is clicked in a sprite track, it “receives” the mouse click. However,
there are times when you may want to have sprites that do not receive a mouse
click, and instead, you want the mouse click to “pass through” that sprite (and
on to another sprite or perhaps another track behind the sprite track). In earlier
versions of QuickTime, this was not possible.

In QuickTime 6, however, this behavior—passing a mouse click through a
sprite—can be controlled through a new sprite property. In addition, you can
control all the sprites in a sprite track through a new sprite track property.

Controlling Hit-Testing Mode of an Individual Sprite

In QuickTime 6, each sprite has a property:

canBeHitTested

This property can have a Boolean value of either TRUE or FALSE.

When a sprite is created, this property is defaulted to TRUE. The property is an
actual property of sprites within a sprite world. Thus, this property can be set
and retrieved by means of sprite world calls directly: SetSpriteProperty and
GetSpriteProperty, using the kSpritePropertyCanBeHitTested (defined in
Movies.h) constant and passing and receiving the property value of TRUE or

Sprite API Changes 77
© Apple Computer, Inc July, 2002

78

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

FALSE. Further, when calling a sprite world’s SpriteHitTest or
SpritelWorldHitTest routines, you can pass the new flag
spriteHitTestTreatAl1SpritesAsHitTestable to have SpriteWorld’s hit testing
ignore the individual sprites’ own canBeHitTested property and make all sprites
hit testable. Note there is no flag for making all sprites not hit testable.

Since sprite media uses sprite world, this property can also be manipulated by
means of SpriteMedia calls: SpriteSetSpriteProperty and
SpriteGetSpriteProperty, passing kSpritePropertyCanBeHitTested and passing/
receiving the property value of TRUE or FALSE.

Finally, this property can be manipulated by means of non-primary source data
using the kTrackModifierObjectCanBeHitTested (also defined in Movies.h)
constant.

Controlling Hit-Testing Mode of a Sprite Track

Sprite Tracks in QuickTime have a property:

allSpritesHitTestingMode

It can have three values, as defined in MovieToolbox. h:

kSpriteHitTestUseSpritesOwnPropertiesMode = 0,
kSpriteHitTestTreatAl1SpritesAsHitTestableMode = 1,
kSpriteHitTestTreatAl1SpritesAsNotHitTestableMode = 2

When a sprite track is created, this property defaults to
kSpriteHitTestUseSpritesOwnPropertiesMode

This property can be specified in the media by having a aTAtom of type
kSpriteTrackPropertyAl1SpritesHitTestingMode, a size of short, and a value of
0,1or2.

Also, this property can be set at runtime by means of SpriteSetSpriteProperty,
which normally is used to set properties of sprites, but has been overloaded to
now be able to set track properties. To do so, the spritelD should be equal to
FOUR_CHAR_CODE('Trck"), the property type should be
kSpriteTrackPropertyAl1SpritesHitTestingMode and then the property value
should be 0, 1, or 2.

Sprite API Changes
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Correspondingly, the track property can be retrieved via
SpriteGetSpriteProperty with a sprite ID of FOUR_CHAR_CODE('Trck') and a
property type of kSpriteTrackPropertyAl1SpritesHitTestingMode.

Handling Mouse Clicks

When a mouse click occurs within a sprite track, the sprite media handler will
first examine its kSpriteTrackPropertyAllSpritesHitTestingMode property to see
how to handle the click.

If the property is set to kSpriteHitTestUseSpritesOwnPropertiesMode, the sprite
media handler will then use the individual hit testing property
kSpritePropertyCanBeHitTested of the sprite clicked on to determine if the sprite
will “receive” the click or not. If not (i.e., the sprite’s
kSpritePropertyCanBeHitTested property is FALSE), and the mouse click is over
another sprite, the media handler will then consider that sprite’s
kSpritePropertyCanBeHitTested property and, if TRUE, will have that sprite
receive the mouse click. If FALSE, then the process continues with other sprites
under the mouse until one receives it or there are no further sprites at the
location of the mouse click. If none, the sprite media handler will inform
QuickTime it does not wish to handle the mouse click at all, which will then
propagate the mouse click to the Track underneath it in the movie.

If the kSpriteTrackPropertyAl1SpritesHitTestingMode property of a Sprite Track
isset to kSpriteHitTestTreatAl1SpritesAsHitTestableMode, then the sprite
media handler will ignore the kSpritePropertyCanBeHitTested Sprite properties
of all sprites within the track and instead consider all the sprites as being able to
receive mouse clicks.

If the kSpriteTrackPropertyAl1SpritesHitTestingMode property of a Sprite Track
isset to kSpriteHitTestTreatAl1SpritesAsNotHitTestableMode, then the sprite
media handler will ignore the kSpritePropertyCanBeHitTested Sprite properties
of all sprites within the track and instead consider all the sprites as being unable
to receive mouse clicks.

Sprite Track Setting Enhancements

A Sprite Track enhancement is provided in QuickTime 6 that gives content
creators, primarily, and users, secondarily, greater flexibility and control over
the pixel depth of the offscreen Graphics World (GWorld) that a Sprite Track
utilizes for the composition and management of its sprites.

Sprite API Changes 79
© Apple Computer, Inc July, 2002

80

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Limited Control of Offscreen Bit Depth

In earlier versions of QuickTime, there was a limited amount of control a
content creator or user had over the offscreen bit depth. In the QuickTime
Player Properties 2 Info Panel of a Sprite Track, you could choose one of these
options:

= Best Depth. (Have the Sprite Track determine
empirically the best depth for the track)

n 256. (8-bit Pixels)
» Thousands. (16-bit Pixels
= Millions+. (32-bit Pixels)

80 Tennis Gama Properiies

Sprite 1 # | Properties 2 3 |

W Track is Visible

"_lf Has Aotions
Preferred depth Thausands " geq
idie Frequency: Every 1uck(sl [Ser..

Each option is at best a suggestion to the Sprite Track as to what the offscreen
bit depth should be. Even though, for example, 256 is selected, the Sprite Track
might, depending on various parameters—such as monitor bit depth, memory
constraints, track or sprite graphics modes—create an 8-bit offscreen, a 16-bit
offscreen or even a 32-bit offscreen graphics world.

While this may at times yield better visual results, it also may result in poor
memory usage, degraded performance, or even worse—a visual result not
intended by the content creator.

Sprite API Changes
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Although such a suggestive approach makes sense for the Best Depth setting
where the user is explicitly asking the Sprite Track to make such a decision, it
may be counter-productive for the other three available choices.

New Preferred Bit Depth Info Panel

QuickTime 6 now provides users with greater control and flexibility over the
depth of the Sprite Track offscreen graphics world. To accomplish this,
QuickTime 6 has added a new mode, called Actual Depth, that has the same
four options as Best Depth, 256, Thousands and Millions+.

Note that for purposes of backward compatibility, QuickTime also maintains
the old method, which is called Preferred Mode.

The difference between Actual and Preferred modes is that in Actual Mode, a
choice of 256, Thousands or Millions+ dictates that the Sprite Track offscreen
depth be exactly as chosen. This provides explicit choice and control over image
quality, performance and memory usage.

The option of Best Depth under Actual Mode is analogous to Best Depth under
preferred Mode: although the algorithms differ slightly, both modes allow the
Sprite Track to determine the offscreen bit depth according to what is best
under the current circumstances.

Switching Between Modes

A user can switch any sprite movie from Preferred Mode to Actual Mode and
from Actual Mode to Preferred Mode by holding down the Option Key on

Mac OS 9 or Mac OS X, or the Alt Key on Windows while clicking the Set button
in the Properties 2 Info Panel and subsequently clicking the OK button in the
dialog that comes up and allows you to choose a setting. If you choose Cancel
in the dialog, there is no change in mode.

Sprite API Changes 81
© Apple Computer, Inc July, 2002

82

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

80 Tennis Came Properties

Sprite 1 B propartees 2 = |

W Track is Visible

"_lfllc.a ACtiong

i '

Actual Depth Millians+ 581

ldle Freguemcy Everny 1 thikis] f Sy

The user can tell if a Sprite Track is in Actual or Preferred mode, as the label in
the Info Panel switches on the fly between “Actual Depth:” and “Preferred
Depth:”.

A New Sprite Track Property

In order to support the new Actual Depth mode, a new Sprite Track Property
has been added:

kSpriteTrackPropertyPreferredDepthInterpretationMode = 109

This property is optional. If the property is absent, the Sprite Track operates in
Preferred Depth mode.

If this property is present, it has a single value, of size short, that can be one of
these values:

m kSpriteTrackPreferredDepthCompatibilityMode = 0

m kSpriteTrackPreferredDepthModernMode = 1

If the value of this property is kSpriteTrackPreferredDepthCompatibilityMode,
then the Sprite Track operates in Preferred Depth mode. However, if the value is
kSpriteTrackPreferredDepthModernMode, then the Sprite Track operates in the
new Actual Depth Mode.

Sprite API Changes
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Using the spriteSetSpriteProperty API

To programmatically set the Sprite Track depth mode, you use the
SpriteSetSpriteProperty call of the Sprite Media Handler:

pascal ComponentResult SpriteSetSpriteProperty(Media media,
QTAtomID spritelD,
long propertyType,
void *propertyValue);

Pass a four character code of ‘Trck’ for the spritelD and specify
kSpriteTrackPropertyPreferredDepthInterpretationMode as the property type.
Finally, pass a value of kSpriteTrackPreferredDepthCompatibilityMode OF
KSpriteTrackPreferredDepthModernMode directly as the propertyValue

For example, to Set a Sprite Track to use the Actual Depth mode:
error = SpriteSetSpriteProperty(SpriteMedia,
‘Trck’,
kSpriteTrackPropertyPreferredDepthInterpretationMode
kSpriteTrackPreferredDepthModernMode,) ;

New Wired Actions and Operands

The following wired actions and operands are new in QuickTime 6.

New Sprite Actions

The following new actions enable interactive content creators to request,
display, and manage images hosted outside of the Movie in which they are
used.

kActionSpriteTrackNewImage = 7182, /* (C string imageURL, QTAtomID
desiredID) */

New Wired Actions and Operands 83
© Apple Computer, Inc July, 2002

84

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Loads an image and gives it the next available image index, and
the desired ID, if available.

kActionSpriteTrackDisposelmage = 7183, /* (short imagelndex) */

Disposes of an image that has previously been loaded and has
the supplied image index.

The two new actions, kActionSpriteTrackNewImage and
kActionSpriteTrackDisposelmage, always interact with the images loaded at
runtime, and should always be used to reference indexes higher than those of
the images that are integrated within the movie when it is created.

kActionSpriteTrackNewImage takes as a parameter the URL of the image to be
requested and an ID with which you can reference that image. Passing an ID of
0 will prompt this action to assign the next available (unique) ID greater than
the current image count. In comparison, the index assigned will always be the
integer one greater than the current image count.

For example, a target sprite track has 2 images with index/1D pairs of 1/1 and
2/777, respectively, before this action is executed. The new image action is
called with “image. jpg” as the URL and a desiredID of 6. Assuming the URL is
valid, the new image action will be given the index 3 and honor the requested
ID of 6. If the URL is invalid, or if ID 1 or 777 is requested, index 3 will not be
assigned nor will any 1D, because the image has failed to load. A subsequent
call of kActionSpriteTrackNewImage will attempt to use index 3 again. For this
reason, it is advantageous for the movie author to maintain a tally or query the
number of images in the Track (kOperandSpriteTrackNumImages) to predict the
new index.

kActionSpriteTrackDisposelmage takes as a parameter the index of the image to
be released from memory. The image specified by the index is required to be
one loaded through kActionSpriteTrackNewImage. In other words, the index is
required to be one previously assigned by a kActionSpriteTrackNewImage.
Images authored into the movie, either as data or by reference, cannot be
disposed of in this way. Note also that subsequent calls to
kActionSpriteTrackNewImage will not fill the “holes™ left by
kActionSpriteTrackDisposeImage, but will continue to increment the index.
Thus, kActionSpriteTrackDisposelmage exists to enable movie authors to
manage the memory usage of a movie during playback—for example, when the
movie may only need an externally referenced image temporarily.

New Wired Actions and Operands
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

New Sprite Operands

Two new operands have been added in QuickTime 6 to allow script authors to
reference images by either index or ID. These are

kOperandSpriteTrackImageIDByIndex = 3107 /* (short imagelndex) */

Returns the ID for an image that has the index supplied as the
parameter.

kOperandSpriteTrackImageIndexByID = 3108 /* (QTAtomID imagelD) *
Returns the index of the image whose ID is equal to that

supplied as the parameter. This operand will return a 0 if no
image index matches the ID given.

New Wired Actions and Operands for Chapter Lists

The following new actions and operands allow you to have access to chapter
names in the chapter track and their corresponding times in the movie.

They conceptually extend what you can do with kActionMovieGoToTimeByName.
You can navigate through chapters by index to pick one and go to the time
associated to it. You can get the name of a chapter from index, or get the index
of a chapter from name.

Going To a Chapter by Index

The following actions go to the time associated to a chapter. The chapter is
specified relative to the current chapter or by index.

kActionMovieGotoNextChapter = 1039, /* no params */

Changes the movie time to the start of the next chapter.
kActionMovieGotoPreviousChapter = 1040, /* no params */

Changes the movie time to the start of the previous chapter.

kActionMovieGotoFirstChapter = 1041, /* no params */

New Wired Actions and Operands 85
© Apple Computer, Inc July, 2002

86

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Changes the movie time to the start of the first chapter.
kActionMovieGotolLastChapter = 1042, /* no params */

Changes the movie time to the start of the last chapter.
kActionMovieGotoChapterByIndex = 1043, /* (short index) */

Changes the movie time to the start of the nth chapter

Getting the Name and the Index of a Chapter

The following operands allow you to get the name or the index of a chapter.
There is also an operand that returns the number of chapters in the movie.

kOperandMovieChapterCount = 1038,

Gets the chapter count.
kOperandMovieChapterIndex = 1039,

Gets the current chapter index.
kOperandMovieChapterName = 1040,

Gets the current chapter name.
kOperandMovieChapterNameByIndex = 1041, /* (short index) */

Gets the name of the nth chapter.
kOperandMovieChapterIndexByName = 1042, /* (cstring name) */

Gets the index of the chapter with passed in name.

New Wired Actions and Operands for Sprites and Sprite Tracks

The following new actions and operands allow you to have access to the sprite
property and the sprite track property described above, having full control over
how the sprites in a sprite track interact with mouse clicks.

New Wired Actions and Operands
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Sprite Hit Testing Property, Actions, and Operands

A wired action and a wired operand let you get and set the sprite hit testing
property.

kActionSpriteSetCanBeHitTested = 3094, /* (short flag) */
Sets the value of the hit testing property.
kOperandSpriteCanBeHitTested = 3105,

Returns the value of the hit-testing property.

Miscellaneous Wired Actions and Operands

A few miscellaneous new actions and operands have been added in
QuickTime 6.

kQTEventKeyUp Event Type Added

QuickTime 6 adds the kQTEventKeyUp event type that can be used in wired
actions. It corresponds to key-up events on the keyboard. Applications may
need to take special actions in order to receive key-up events (which are then
passed to a movie controller using MCIsPlayerEvent). For example, Carbon
applications that use the classic event model may need to call:

SetEventMask(everyEvent);

since by default the OS does not report key-up events to an application.
Similarly, Carbon-event-based applications may need to register a handler for
kEventRawKeyUp

The movie controller also now supports the mcActionKeyUp action.

Random Seed

The following action can be used in conjunction with kOperandRandom.

kActionSetRandomSeed = 6164, /* long randomSeed */

Sets the QuickDraw seed value which is starting point for any
subsequent kOperandRandom calls.

New Wired Actions and Operands 87
© Apple Computer, Inc July, 2002

88

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

QTVR Object Actions and Operands

QTVR has the concept of view states for object movies depending on the mouse
button. These are alternate images that are displayed depending on the state of
the mouse button.

The following actions and operands provide control of the view state:
kActionQTVRSetViewState = 4109, /* long viewStateType, short state */
Sets the object node's state type to the new state value.
kOperandQTVRViewStateCount = 4103,
Gets the count of view states for an object node.
kOperandQTVRViewState = 4104, /* long viewStateType */

Gets the value of a view state.

The valid view state types are defined as follows:

typedef UInt32 QTVRViewStateType;

enum {
kQTVRDefault
kQTVRCurrent
kQTVRMouseDown

It
N o

Il
w

Additional New Actions and Operands

The following are new actions and operands available in QuickTime 6:
kActionMovieSetScale = 1044, /* (Fixed xScale, Fixed yScale) */
Sets the target movie’s scale. This action operates in a similar
manner to QTPlayer’s menu commands for setting the movie’s

size:

Menu kActionMovieSetScale parameters

New Wired Actions and Operands

© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Half Size
Normal Size :
Double Size :

N = O
o O o1
N = O
o O o1

This new action allows the scriptor to scale a movie by means of an action
(similar to the QTPlayer’s menu commands), and provides a way to enlarge
skinned movies.

The following new action allows the scriptor to query the movie for the
predefined annotations that begin with the copyright symbol.

kOperandMovieAnnotation = 1043, /* (c string requested, long flags) */
"flags"

1 : return data as a string
2 : return data as xml formatted string

"requested”

as string: a single annotation type, that is, "qt-userdata-cpy" as
XML: an empty string means return all appropriate user data as
an XML-formatted string. Otherwise, it is a comma-deliminated
list of the specific user data that the scriptor wants returned as
an XML-formatted string.

Because the copyright symbol is only in the Macintosh font table, the scriptor
will need to prefix requests with "qt-userdata-". If, for example, the request is
for 'onam', the scriptor must pass in "qt-userdata-nam".

Other examples:

'Ocpy' : "qt-userdata-cpy"
'©aut' : "qgt-userdata-aut"

The following new operands in QuickTime 6 allow scripts to capture what the
controller is displaying for streamed movies that are connecting, buffering, and
so on.

kOperandMovieConnectionFlags = 1044,

Returns the current state of the streaming flags.

New Wired Actions and Operands 89
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

kOperandMovieConnectionString = 1045,

Returns the current string that may have been displayed in the
controller. This is only meaningful if the flags are non-zero.

VBR Sound Compression Support

90

QuickTime 6 adds support for using variable bitrate (VBR)-enabled sound
compressor components. Both the QuickTime Movie exporter component
available in the export dialog (also known as the ConvertMovieToFile API
dialog) and the Standard Sound compression dialog component have been
updated to use and to recognize VBR compressor components.

QuickTime 6 also provides QuickTime developers with the capability of
building their own custom VBR-enabled sound compressor components, as
discussed in this section.

Background

QuickTime 4.1 and the Sound Manager introduced support for the playback of
VBR audio—in particular, VBR support for the decoding and playback of MP3
audio. A number of modern audio compression formats, such as MP3, either
support or require VBR decoding.

Versions of QuickTime prior to QuickTime 4.1 provided support only for
constant bitrate (CBR) audio. The fundamental difference between constant
bitrate and variable bitrate audio is related to the rate at which audio data is
presented to the sound decoder to generate sound.

In CBR audio, the rate is constant. If one second of audio requires 40 K bytes,
then 5 seconds will require 200 K bytes (= 40 Kbytes/sec * 5 sec). Moreover,
given a stream of 3 minutes of audio compressed like this, to start playing at
2:30, you would advance 6,000K into the stream.

With VBR audio, the data rate varies depending upon the complexity of the
encoded sound. For example, a very quiet passage of a score could be
compressed much more than a very exciting passage. A VBR encoder will
analyze the audio and use the appropriate number of bits, varying its usage in
the process. This means that the amount of data for a complex passage is

VBR Sound Compression Support
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

greater than for a less complex passage. This also complicates locating data in
the stream because the “road map” is located within the stream.

By way of analogy, video encoding formats are typically VBR in nature. A more
complex image requires more bits than a less complex image. As different
images are encoded, the number of bits required for each will vary. The analog
to CBR audio in the video space is raw RGB or uncompressed YUV.

QuickTime 6 VBR Support

As discussed, QuickTime and the Sound Manager have been able to decode
self-framed, variable bitrate formats such as MP3 since QuickTime 4.1. In
addition, the QuickTime Movie file format has been able to carry variable
bitrate audio.

With QuickTime 6, QuickTime and the Sound Manager add much richer and
more comprehensive support for VBR audio, including support for both
compression of VBR audio and decompression of non-self-framed VBR audio
formats. An example of a non-self-framed audio format is AAC, described in
the section “Defining AAC” (page 36). Table 2 shows the audio support
available since QuickTime 4.1.

Table 2 VBR audio support in different versions of QuickTime
Version VBR Audio Support
QuickTime 6 Encode and decode, e.g., Non-self-framed VBR
MP3 audio, e.g., AAC
QuickTime 5 Decode and playback Self-framed VBR
QuickTime 4.1 Decode and playback, Self-framed VBR
e.g., MP3

Some Techniques For Compressing VBR Audio

This section discusses some of the techniques you can use if you need to
compress VBR audio.

Because variable bitrate audio may contain audio frames of different sizes, it is
important that an application use the appropriate APIs to generate the
compressed audio. If, for example, your application receives a -213

VBR Sound Compression Support 91
© Apple Computer, Inc July, 2002

92

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

(siVBRCompressionNotSupported) error from QuickTime or the Sound Manager, it
indicates either QuickTime or the Sound Manager doesn’t “know” about VBR
compression, or doesn’t believe your application understands VBR
compression.

To inform QuickTime that your application understands the details of VBR
compression, here are some steps that you should consider:

1. To begin with, you must use the SoundConverterFillBuffer() APL. If you are
using the SoundConverterFillBuffer() API, you've already done most of the
work. Although SoundConverterConvertBuffer() cannot be used for VBR
compression, you can configure the SoundConverter without making a
decision as to using FillBuffer or ConvertBuffer yet, in case you want to
continue using the SoundConverterConvertBuffer() routine for fixed
compression audio. There is no good reason to do so, but it may be important
in your current implementation.

2. Your application must inform the SoundConverter that it can handle VBR
audio. To do this, immediately after opening the SoundConverter with
SoundConverterOpen(), make a call to SoundConverterSetInfo(), passing the
siClientAcceptsVBR selector like the following:

SoundConverterSetInfo(theSoundConverter, siClientAcceptsVBR, (void*)true);

This lets the sound converter know that you are VBR compression-aware.

3. After configuring the sound converter with compression parameters (if
present), request the compressor’s compression information, so you know
how many PCM samples are generated per audio frame.

4. Ask for siCompressionFactor and look at the resulting Compressioninfo. If the
compInfo.compressionID field is set to variableCompression, then the codec is
configured to generate VBR audio. If it has another value, the codec is
configured for a fixed bitrate—just as it would in versions of QuickTime
prior to QuickTime 6. Remember that a single codec can support fixed and
variable compression, so don’t assume its capabilities from its codec type.

Just as before, samplesPerpPacket holds the PCM sample count per audio frame
(packet). For VBR audio, you can ignore bytesPerFrame/bytesPerPacket, Since
the sizes aren’t constant.

5. For variable compression codecs, you need to know the worst case size of a
single audio frame (packet). You can then allocate the output buffer for use
with the SoundConverterFillBuffer() routine, based on a multiple of this

VBR Sound Compression Support
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

size. Failing to do this might result in SoundConverterFil1Buffer() not being
able to generate even a single audio frame. If you spin on
SoundConverterFillBuffer() waiting for it to generate at least one audio
frame before continuing but don’t provide a large enough output buffer, you
have the makings of a really cool and involved infinite loop.

Use the new selector siCompressionMaxPacketSize to retrieve the worst case
packet size. The following code shows an example:

UInt32 maxPacketSize = 0;

err = SoundConverterGetInfo(theSoundConverter,
siCompressionMaxPacketSize,
&maxPacketSize);

If a VBR codec doesn’t support this selector, you may want to use a worst case
output buffer size such as 32K.

Note

VBR codec developers should implement this selector.
This will not be implemented by fixed bitrate compressors,
although it is not illegal to do so.

6. Use SoundConvertFillBuffer() to perform the encoding, as shown in the code
below. The value should be tied to the codec’s current configuration.

err = SoundConverterFillBuffer(theSoundConverter, //a sound converter

fillBufferUPP, // proc

fillBufferRefCon, // refCon passed to FillDataProc
soundOutputBuffer, // compressed audio buffer
soundOutputBufferSize, // size of compressed audio buffer
&actualOutputBytes, // number of output bytes
&outputFrames, // number of output frames
&outputFlags); // fillbuffer returned advisory flags

The difference with VBR compression is that each call only returns audio, where
all the frames have the same size in bytes. This is necessary because the
SoundConverterFillBuffer() API returns the number of bytes it wrote and the
number of frames but doesn’t return any kind of array indicating the
boundaries between frames. If you divide actualOutputBytes by outputFrames,
you can determine how large each audio frame is.

VBR Sound Compression Support 93
© Apple Computer, Inc July, 2002

94

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

As an example, if the audio frames have the following sizes in bytes

L 40 10 40 JIL 50 11 50 1L 50 1030 10 40 1]

at least four calls to SoundConverterFil1Buffer will be necessary in order to
encode these frames. This call would return the following values:

actualOutputBytes outputFrames
80 2
150 3
30 1
40 1

Using the Standard Sound Compression
Component and VBR Compression

Like the SoundConverter, QuickTime doesn’t want to offer VBR sound
compressors to applications that cannot support them. This means that if your
application uses the Standard Sound Compression dialog to select and
configure sound compressors, you should pass the new (in QuickTime 6)
scSoundVBRCompression0k selector to scSetInfo() as in the following code
example:

ComponentInstance ci = OpenDefaultComponent(StandardCompressionType,
StandardCompressionSubTypeSound) ;
if (ci) |
Boolean doVBR = true;

SCSetInfo (ci, scSoundVBRCompressionOK, &doVBR);

If you don’t pass the new scSoundVBRCompression0K selector to SCSetInfo(), only
fixed compression codecs will be presented in the list.

In fact, compressors that perform fixed and variable compression will be
presented if this selector is not called, but those compressors will only offer
their fixedCompression options. Since AAC only performs variable
compression, it will not appear in the dialog unless you call scSetInfo with
scSoundVBRCompressionOK.

VBR Sound Compression Support
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

In QuickTime 6, a new Standard Compression selector is provided in
QuickTimeComponents.h that returns a list of available codecs. The selector, a
pointer to a handle, is defined as follows:

scAvailableCompressionlListType = FOUR_CHAR_CODE('avai')

This is the same kind of handle as the existing scCompressionListType selector.
Applications that need to build lists of codecs (compressors) for their user
interface should adopt this API. If the scAvailableCompressionListType Sselector
is not recognized, use the previous code.

Audio File Formats and VBR Compression

Not all audio file formats can hold variable compression audio, since the
information about framing isn’t always available in every format.

QuickTime Movies provide a format that can hold the information, just as
MPEG-4 files can. AIFF and WAVE, however, are formats that do not carry such
information.

This explains why you see the MPEG-4 audio codec available in the QuickTime
Movie exporter’s sound options—but not in the AIFF options. Not surprisingly,
these exporters use the Standard Sound Compression dialog as above. Because
VBR compression is opted in by the client, only the QuickTime Movie exporter
passes the scSoundVBRCompression0K selector.

Doing Something with VBR Audio Data

At this point in the process, your application is either generating VBR audio to
be stored in a QuickTime Movie for playback later, or you want to play or
decode the audio directly. Of course, you may be using your own format to
store the audio, but remember, you need to store the framing information
yourself.

If you store the data in the QuickTime Movie, you need to store the generated
audio frames in a way that is compatible with how QuickTime stores VBR
audio in sound tracks.

To play or decode the audio, you need to use the additional fields in the
ExtendedSoundComponentData, ExtendedScheduledSoundHeader, Or
ExtendedSoundParamBlock, depending on how you are playing the data.
Fortunately, they are the same fields.

VBR Sound Compression Support 95
© Apple Computer, Inc July, 2002

96

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

The following fields are introduced in QuickTime 6:

long frameCount; // number of audio frames

long * frameSizesArray; // pointer to array of longs with frame sizes
// in bytes

lTong commonFrameSize; // size of each frame if common

Specifically, frameCount, frameSizesArray and commonFrameSize are relevant for
playback and decoding of AAC audio, as well as for other non-self-framed
audio VBR audio formats.

As discussed earlier, QuickTime versions prior to QuickTime 6 could handle
self-framed VBR audio. This is why the existing extended bufferSize field is
sufficient for MP3 audio. AAC audio, though, doesn’t have information within
it to indicate framing, and depends upon out-of-band data to carry that
information. In the case of QuickTime and MPEG-4 movies, that information is
in the sample tables.

The fields just described (new in QuickTime 6) are used to convey the
information to the audio decoder (or sound decompressor in Sound Manager
parlance) and are necessary for use with AAC audio. In all cases, these fields all
describe a single buffer of audio. The existing sampleCount, buffer and
bufferSizes fields all must be valid.

In addition, either frameCount and frameSizesArray Or commonFrameSize must be
valid (indicated by extendedFlags) in order to decode AAC data. (Note that
frameCount and frameSizesArray must be valid as a unit because they work
together, not as separate fields.)

The flags for extendedF1ags are in the header file Sound.h as follows:

kExtendedSoundFrameSizesValid = 1L << 2,
// set if frameSizesArray is valid
// (this will be nil if all sizes are common and
// kExtendedSoundCommonFrameSizeValid is set)

kExtendedSoundCommonFrameSizeValid = 1L << 3,
// set if all audio frames have the same size and
// the commonfFrameSize field is valid

If commonFrameSize is set, this means that all audio frames in the VBR buffer
have exactly the same size in bytes. There is no frame count, since bufferSize
divided by commonFrameSize is the frame count.

VBR Sound Compression Support
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

If frameCount and frameSizesArray are valid (remember, these fields must be
considered as a unit), then frameCount holds a count of the number of elements
in the frameSizesArray array. This array is a set of 32-bit values holding the size
of each audio frame. In the above example, the fields would look like this:

frameCount = 7;
frameSizeArray = --> { 40, 40, 50, 50, 50, 30, 40 }

Note

The frameCount and frameSizesaArray fields will be updated
by the decoder, so you should not allocate a pointer and
store that in frameSizesArray and expect to be able to
deallocate it when done. Instead, allocate the pointer and
store a copy of the address in frameSizesArray.

Just as you can use the SoundConverterFillBuffer() routine to encode VBR
audio, you can also use it to decode AAC audio. However, the
SoundConverterFillBufferDataProc’sreturned ExtendedSoundComponentData must
set the appropriate flags, including the fields described above.

New Tween Component API

In QuickTime 6, tween components now provide an interrupt-safe interface
using a new API routine, QTDoTweenPtr. This new call provides for return values
in a pointer rather than a handle. Some specific tweens implemented as
components required changes to ensure their interrupt safeness. Not all
Apple-defined tween components support this new APIl. However, all of those
needed for effects have been so revised.

New Tween Component API 97
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

QTDoTweenPtr

Runs a tween component, providing for return values in a pointer rather than a
handle.

O0SErr QTDoTweenPtr (QTTweener tween,
TimeValue atTime,
Ptr result,
long resultSize)

tween A tween to be run.
atTime A value that defines the time to run the tween.
result The result of the tweening operation.

resultSize The size of the result returned.

DISCUSSION

This routine is an interrupt-safe version of the QTDoTween routine, which also
runs a tween component. Note that it has the following limitations:

= Not all tween types support this call (those which must allocate memory), in
which case they return codecUnimpErr.

s The QTAtomContainer used for the tween must be locked.
= The dataSize must be large enough to contain the result.

= This call is not supported for sequence tweens; you should use interpolation
tweens instead.

VERSION NOTES
Introduced in QuickTime 6.

PROGRAMMING INFO
C interface file: Movies.h

Carbon status: Supported

98 New Tween Component API
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Changes to Effects Dialog

In QuickTime 6, the effects dialog has been revised and enhanced. The new
features include

Grouping into types within the scrolling list on the left side of the dialog. In
this new design, each effect defines what subgroup it belongs to, as shown in
Figure 11. Any third-party effects installed appear under “Misc” until they
are revised to include their subgroup information.

Resizability of the dialog and split bars to control the list vs. preview vs.
effect-specific areas. Note that the resize control is only drawn in Mac OS 8.1
and later.

Providing a widget for picking points, which can be used in any effect that
allows the selection of points (that is, x and y values). Notice that such items
have turned from a multitude of sliders into this point-picking widget.

Allowing effect components to specify custom “picking interfaces” for parts
of their user interface, while allowing the Generic effect to handle the
remainder.

Providing a way to set slider values by typing. Any slider within the effects
dialog will now allow this. Command-clicking any slider brings up a modal
dialog. The dialog is centered below the control to edit. The dialog is sized
appropriately for name and length of number edit. The dialog contains a
type-in field, parameter name label, and OK and Cancel buttons.

A knob control that provides a way to set angles greater than 360 degrees.
This is used in the Slide effect. Knob control now has an inner section that
serves as an hour hand. When the knob is manipulated beyond one rotation,
the hour hand increments. This wraps properly both forward and backward
over the 12 o’clock position.

Effects may now specify some common “presets” that the user can easily
select. These are used in the Slide effect. When such an effect is selected, the
first subpanel is a list of presets, each with a name and preview. The pane
scales to the available space, and implements a scroll bar if needed.

o The subgroup pop-up menu at the top of the screen will read Easy and
Custom if there are no additional subpanes. If there are, the pop-up menu
reads Easy and the names of the other subpanes.

Changes to Effects Dialog 99

© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Figure 11 A new effects dialog in Mac OS X with sliders and menu items

100

Chaoose Video Filger

None < Haiis B
sratches
¥ Adjustments =
o
¥ Filtars L] is i T G0
Sharpen Hair Length ="
¥ Lpecial Effects
Color Style 1 1 25 37
Coler Tint
Film Modse
Lens Flare
load. 4 Mt M Cancel & oK%

= A new effect called Channel Composite provides a way to create a bitmap

whose color components are a combination of source A and B color
components, reshuffled, and inverted as desired.

The Color Tint effect now allows user to specify an amount of tinting to
allow a gradual transition to a particular color, such as Sepia. A new pair of
sliders controls this. Tweening is allowed. The default value is to tint fully
(for backwards compatibility) for the entire duration of the effect.

Effects may now have tween values when filtering during export, that is,
Movie to QuickTime Movies. Some effects, such as Lens Flare and RGB
Balance, now have a starting and ending value that you can set. Some (such
as RGB Balance) display this information only if the Option key is pressed
when selecting the Filter button. This is because tweening these values is
uncommon.

Changes to Effects Dialog
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Custom Effect Controls

Effects may choose to implement custom controls to allow the user to more
easily edit complex parameters that are ill-served by simple sliders or type in
boxes. Effects may allow a custom control for either a single parameter, or for a
group of parameters.

Parameter(s) for a custom control must still be data types defined by the
standard set, or for complex records of data, must be defined within a group as
individual parameters made up from base data types (for example, a point is a
group containing two Fixed point numbers).

This is to allow applications that do not wish to use the custom control for the
effect to set values themselves.

Effects should be aware that these custom controls may be deployed by the
application in either a dialog or a window, with application-defined
background colors or patterns, along with application-defined font
characteristics for the window.

It is recommended that an effect implement custom controls only when needed,
and that custom controls be used for specific types of parameters (i.e., point,
rectangle, polygon, path) rather than the entire user interface for the effect.
Effects may choose to implement multiple custom controls that combine with
standard controls to present the total user interface.

For effects that have very complex user interfaces not well suited for inclusion
within a single window, it is recommended to use
kParameterImagelsPreset—which allows the effect to have an external editing
application for parameters that may then be set within the standard User
Interface via the open file dialog or drag and drop. The Lens Flare (shown in
Figure 12) effect’s “Flare Type” is an example of such a preset.

Changes to Effects Dialog 101
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Figure 12 A new Lens Flare effect dialog in Mac OS X

102

Chaose Widao Filver
Intensity and Flare Center ¥ ‘

[T E
¥ Adjustments Size =
F Blur LG 575 05 1525 204
¥ Filers
Briokiness: = e

F Sharpen #
¥ Special ERects o0 0.25 0.5 0.73 1.0

Color Style Flare Cenier;

Coler Tt . M From (O To

il Ml sn P

s x: 0.0 []a.0 |

Lem Flare ‘Ir.',l‘

'r.LI:II.I:l 3 f Save . r-‘I:lnlu.-lll" oy

New Behavior Flag kcustomControl Added

For parameters that use a custom control to control a single parameter value, a
new behavior flag has been added (kCustomControl), and the behavior for the
parameter should be kParameterItemControl.

For parameters that are groups, the same flag (kCustomContro1) should be used,
and the behavior should be kParameterItemGroupDivider. Groups with the
kCustomControl bit set will be implemented by calling the custom control for
that group—the parameters within that group will not be processed in the
normal manner.

In both cases, the new customType and customID fields of the behavior must be
filled in. These are used in order to allow your custom control to determine
which parameter is being edited in the case where the custom control is used
for the editing of multiple parameters. These values are passed into the
pdActionCustomNewControl call. Since the custom control mechanism is also used
by QuickTime’s default effect dialogs, you should be prepared to pass onto the

Changes to Effects Dialog
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

base effect any pdActionCustomNewControl calls for type/id pairs that you do not
handle yourself. When pdActionCustomNewControl is called for controls of types
handled by QuickTime, customType is kParameterAtomTypeAndID and customID
is the ID of the parameter atom.

Using pdActionCustomNewControlControl to Create New Custom Controls

pdActionCustomNewControlControl is called by the application to create a new
custom control or set of controls for an effect parameter. When
pdActionCustomNewControl is called, the effect should perform any basic
allocation it needs for storage and return the result in storage. The options
parameter tells the control if the application wishes to support interpolated,
optionally interpolated, or a single value parameter.

Since pdActionCustomNewControlControl may call upon your effect for other
items within the dialog, it is recommended that your effect have an easy way to
determine which controls it implements by using one of these two techniques:

= by having storage be a pointer with an OSType at the beginning to mark
controls implemented by your code

= keeping track in your component globals those custom controls that you
have created

When pdActionCustomDisposeControl is called, any allocation done by the
control should be disposed of. In addition, pdActionCustomDisposeControl is the
last chance the control has to commit any user changes into the sample.

Controls that implement type-in fields typically need to commit any final user
edits at this time.

struct QTCustomControlNewRecord {

void * storage; /* storage allocated/disposed by the control*/

QTParameterDialogOptions options; /* options used to control
interpolation/not*/

QTAtomContainer sample; /* sample that holds the data to be edited*/

long customType; /* custom type and ID specified by effect for

creation of this control*/
long customID;

typedef struct QTCustomControlNewRecord QTCustomControlNewRecord;

typedef QTCustomControlNewRecord * QTCustomControlNewPtr;

Changes to Effects Dialog 103
© Apple Computer, Inc July, 2002

104

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

pdActionCustomPositionControl is called by the application to position the
control within a window or dialog.

The control should determine if it will fit in the allotted area and position itself
there. It should also return the space taken up by the control. Note you are free
to implement controls which are variable in size depending upon which
parameter you are editing. You don’t need to scale your control to the requested
size. If the area presented to your control is too small, set didFit to FALSE. You
should still return in used the size you would have liked to use for the control.
The application will then try again with a new size. Note that all controls must
be able to fit within a minimum of 300 by 250 pixels.

Displaying Text Properly in Application Windows

Custom controls that draw text should make note of the text font, size, and style
at this time in order to properly display within application windows.

Note that the default state for the control is hidden. You will receive a
pdActionCustomShowHideControl in order to enable your control. You should not
draw your control in response to pdActionCustomPositionControl.

struct QTCustomControlPositionControlRecord {
void * storage; /* storage for the control*/
WindowPtr window; /* window to be used by the control*/
Rect location; /* location within the window the control may use*/
Rect used; /* returned by the control to indicate size it actually

used*/

Boolean didFit; /* did the control fit in the specified area?*/
Boolean pad[3];

typedef struct QTCustomControlPositionControlRecord
QTCustomControlPositionControlRecord;

typedef QTCustomControlPositionControlRecord *
QTCustomControlPositionControlPtr;

pdActionCustomShowHideControl is called when the application wishes to
enable/disable your control, or completely disable drawing of the control.

Your control should make note of the new state (if different from the last) and
perform an InvalRect() on your drawing area, or you may draw your control’s

Changes to Effects Dialog
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

initial state in the case of show. You should not attempt to erase your control as
the result of a hide. Instead, call InvalRect() and allow the application to
process the resulting event as appropriate.

struct QTCustomControlShowHideControlRecord {
void * storage; /* storage for the control*/
Boolean show; /* display the control?*/
Boolean enable; /* enable the control (ie, black vs gray display)*/
Boolean pad[2];
b
typedef struct QTCustomControlShowHideControlRecord
QTCustomControlShowHideControlRecord;

typedef QTCustomControlShowHideControlRecord *
QTCustomControlShowHideControlPtr;

Using pdActionCustomHandleEvent TO Process Events

pdActionCustomHandleEvent is called to allow your custom control to process
events.

Typical controls handle the following events:

= activate to draw your control in normal/gray mode
= update to draw your control

= mouseDown to handle clicks

= keyDown to handle typing when you have focus

= idle to perform idle drawing (if applicable)

If your control handles the entire event, set didProcess to TRUE. If you handled
the event, but other controls still need the event, set didProcess to FALSE.

If your control supports the concept of focus for the purposes of typing (such as
by having a type-in box for the parameter), then you set the tookFocus Boolean
as part of your processing of the event. It is assumed that your control will
draw the appropriate focus user interface as a result, and the calling application
will disable any focus drawing within the remainder of the user interface.

By default, custom controls are not given idle time. If you need idle time, set
needIdle to TRUE in response to the event that causes you to need idle (typically
the taking of focus, or the first draw).

Changes to Effects Dialog 105
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Your control will continue to be given idle events until you set needIdle to
FALSE in response to a nul1Event.

struct QTCustomControlHandleEventRecord f{
void * storage; /* storage for the control*/
EventRecord * pEvent; /* event to process*/
Boolean didProcess; /* did we process entire event?*/
Boolean tookFocus; /* did we take focus as a result of this event
(typically mouseDowns)*/
Boolean needldle; /* does this control need idle events?*/
Boolean didEdit; /* did we edit the samples?*/
b

typedef struct QTCustomControlHandleEventRecord

QTCustomControlHandleEventRecord;
typedef QTCustomControlHandlekEventRecord * QTCustomControlHandleEventPtr;

Using pdActionCustomSetFocus to Set or Advance Current Focus

pdActionCustomSetFocus is called in order to set or advance the current focus of
the user interface, typically because the user has pressed the tab or shift-tab
keys, or because the user clicked within the area defined by your control.

Your control will be called with pdActionFocusFirst, pdActionFocusLast, Or
pdActionFocusOff to set or clear focus on your control. Your control will be
called with pdActionFocusForward OF pdActionFocusBackward to cycle focus
within your control (if your control has multiple focus). If your control does not
support focus, or the focus request results in focus moving beyond your
supported range, return pdActionFocus0ff in the focus parameter. Otherwise,
return the focus that you set.

Controls which have no focus would always set focus to be pdActionFocus0ff.

Controls with a single focus would set pdActionFocusFirst when requested to
set either pdActionFocusFirst or pdActionFocuslast, and would set
pdActionFocusOff for either pdActionFocusForward Or pdActionFocusBackward

enum {
pdActionFocusOff = 0, /* no focus */
pdActionFocusFirst = 1, /* focus on first element */
pdActionFocuslLast = 2, /* focus on last element */
pdActionFocusForward = 3, /* focus on next element */
pdActionFocusBackward = 4 /* focus on previous element */

106 Changes to Effects Dialog
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

struct QTCustomControlSetFocusRecord {

void * storage; /* storage for the control*/

long focus; /* focus to set, return resulting focus*/
by
typedef struct QTCustomControlSetFocusRecord
QTCustomControlSetFocusRecord;

typedef QTCustomControlSetFocusRecord * QTCustomControlSetFocusPtr;

Using pdActionCustomSetEditMenu TO Locate The Edit Menu

pdActionCustomSetEditMenu will be called to inform your custom control of the
location of the edit menu.

If your control has editing boxes, this is useful in order to allow the user to
perform cut, copy, and paste operations when focus is on one of these boxes.

struct QTCustomControlSetEditMenuRecord {
void * storage; /* storage for the control*/
MenuHandle editMenu; /* edit menu, or NIL*/
}s
typedef struct QTCustomControlSetEditMenuRecord
QTCustomControlSetEditMenuRecord;

typedef QTCustomControlSetEditMenuRecord * QTCustomControlSetEditMenuPtr;

Using pdActionCustomSetPreviewPicture TO Preview Information

pdActionCustomSetPreviewPicture is called to inform your custom control of
preview information that you may wish to use in the drawing of your user
interface.

struct QTCustomControlSetPreviewPictureRecord {
void * storage; /* storage for the control*/
QTParamPreviewPtr preview; /* preview to set*/

typedef struct QTCustomControlSetPreviewPictureRecord
QTCustomControlSetPreviewPictureRecord;

Changes to Effects Dialog 107
© Apple Computer, Inc July, 2002

108

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

typedef QTCustomControlSetPreviewPictureRecord *
QTCustomControlSetPreviewPicturePtr;

pdActionCustomSetEditCallout tells your control of the need by the application
to be informed of changes to the parameter values (typically for the purposes of
updating previews).

If a callout is available, your custom control should call it whenever a change
has been made to the parameter(s) that your control is editing (as a result of
user actions, most typically). If you choose not to implement this, live dragging
or updating of values will not work.

struct QTCustomControlSetEditCalloutRecord {
void * storage; /* storage for the control*/
QTParamPreviewCalloutPtr callout; /* requested callout, or NIL to
disable*/
b
typedef struct QTCustomControlSetEditCalloutRecord
QTCustomControlSetEditCalloutRecord;

typedef QTCustomControlSetEditCalloutRecord *
QTCustomControlSetEditCalloutPtr;

Using pdActionCustomGetEnableValue to Enable or Disable Other Controls

pdActionCustomGetEnableValue allows you to return a value for the purposes of
enabling or disabling other controls.

Most custom controls do not need to implement this call.

If your control is able to control the enabling and disabling of other parameter
controls (such as is done by standard pop up or enumerated type controls), you
need to supply a value that can be use for greater than or less than types of
comparisons.

struct QTCustomControlGetEnableValueRecord {
void * storage; /* storage for the control*/
long currentValue; /* value to compare against for enable/disable
purposes*/
b
typedef struct QTCustomControlGetEnableValueRecord
QTCustomControlGetEnableValueRecord;

Changes to Effects Dialog
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

typedef QTCustomControlGetEnableValueRecord *
QTCustomControlGetEnableValuePtr;

Using pdActionCustomSetSampleTime to Specify Duration and Start Time

pdActionCustomSetSampleTime tells your control information from the
application about the duration and start time for the sample being edited.

Most controls do not need this information, but some may choose to use it in
the interface they present the user. However, this call need not be made by
applications, so the custom control should be prepared to run when the sample
time information is not available.

struct QTCustomControlSetSampleTimeRecord {

void * storage; /* storage for the control*/

QTParamSampleTimePtr sampleTime; /* sample time information or NIL*/
b
typedef struct QTCustomControlSetSampleTimeRecord
QTCustomControlSetSampleTimeRecord;

typedef QTCustomControlSetSampleTimeRecord *
QTCustomControlSetSampleTimePtr;

pdActionCustomGetValue tells your control to store any value(s) into the specified
atom container.

All custom controls must implement this call.

struct QTCustomControlGetValueRecord {
void * storage; /* storage for the control*/
QTAtomContainer sample; /* sample to store into*/
b
typedef struct QTCustomControlGetValueRecord
QTCustomControlGetValueRecord;

typedef QTCustomControlGetValueRecord * QTCustomControlGetValuePtr;

Using pdActionCustomboEditCommand to Handle Edit Commands

pdActionCustomDoEditCommand tells your control to handle edit commands if it
allow focus and type in boxes.

Changes to Effects Dialog 109
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

All custom controls must implement this call if they support edit boxes.

struct QTCustomControlDoEditCommandRecord {

void * storage; /* storage for the control*/

long command; /* command to execute, return 0 here if processed*/
b
typedef struct QTCustomControlDoEditCommandRecord
QTCustomControlDokEditCommandRecord;

typedef QTCustomControlDoEditCommandRecord *
QTCustomControlDoEditCommandPtr;
typedef Tong QTParameterDialog;
enum {
elOptionsIncludeNoneInlList = 0x00000001 /* "None" effect is included
in Tist */
b

typedef long QTEffectlListOptions;
enum {

pdOptionsCollectOneValue = 0x00000001, /* should collect a single

value only*/
pdOptionsAllowOptionalInterpolations = 0x00000002, /* non-novice
interpolation options are shown */
pdOptionsModalDialogBox = 0x00000004, /* dialog box should be modal */
pdOptionsEditCurrentEffectOnly = 0x00000008, /* List of effects will not
be shown */

pdOptionsHidePreview = 0x00000010 /* Preview item will not be shown */

enum {
effectIsRealtime = 0 /* effect can be rendered in real time */

b

The following is a new API introduced in QuickTime 6.

QTGetEffectsListExtended

Provides for more advanced filtering of effects to be placed into the effect list.

110 Changes to Effects Dialog
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

QTGetEffectsListExtended (QTAtomContainer * Tist,
long minSources,
long maxSources,
QTEffectListOptions getOptions,
0SType majorClass,
0SType minorClass,
QTEffectListFilterUPP filterProc,
void * filterRefCon);

Tist The effect list returned here.

minSources The minimum number of sources that an effect must have to be
added to the list. Pass —1 as this parameter to specify no
minimum.

maxSources The maximum number of sources that an effect can have to be
added to the list. Pass —1 as this parameter to specify no
maximum. The minSources and maxSources parameters allow
you to restrict which effects are returned in the list, by
specifying the minimum and maximum number of sources that
qualifying effects can have.

getOptions The options for populating the list.
majorClass The major class to include, 0 for all.
minorClass The minor class to include, 0 for all.
filterPro Additional client filtering.

filterRefCon A reference constant for the filter proc.

DISCUSSION

This routine provides for more advanced filtering of effects to be placed into the
effect list. Applications can filter on:

= the number of input sources
= effect major or minor class
= custom filtering through a callback

The callback is called for each effect which passes the other criteria for
inclusion. If the callback returns a TRUE result, the effect is included in the list.

Changes to Effects Dialog 111
© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Note that your filter proc may receive multiple effects from various
manufacturers. If you return TRUE for multiple effects of a given type, only the
one with the higher parameter version number will be included.

If you wish other filtering such as effects from a given manufacturer, you can do
this by returning FALSE for the other effects and TRUE for those that you prefer.

typedef CALLBACK_API(Boolean, QTEffectlListFilterProcPtr)(Component
effect, long effectMinSource, long effectMaxSource, 0SType majorClass,
0SType minorClass, void *refcon);

typedef STACK_UPP_TYPE(QTEffectListFilterProcPtr)
QTEffectListFilterUPP;

VERSION NOTES

SEE ALSO

Introduced in QuickTime 6.

QTGetEffectsList, which returns a QT atom container holding a list of the
currently installed effects components.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

QuickTime Effects Classes

112

With an ever-increasing number of effect components, it has become difficult
for applications and users to navigate through the list. This section documents
upcoming atoms that can be used for tagging effects into useful categories.

This will be of use to developers of applications that supply custom effect
picking Ul. It will also be of use for developers of effect components. Two
groupings for effects are here defined: Major Class and Minor Class.

QuickTime Effects Classes

© Apple Computer, Inc July, 2002

DEVELOPER DOCUMENTATION

What's New in QuickTime 6

Major Class

The Major Class for an effect defines the purpose of an effect to allow
applications to perform better filtering. It is not intended that the user see
effects grouped by major class. For example, a two source effect might be given
a major class of kTransitionMajorClass, which allows applications to tell the
difference between two source effects that perform a transition vs. those that
perform operations such as Chroma Key. Some applications may wish to
exclude all effects that are not transitions.

Effects supply information about their Major Class through the use of an atom
that can be found within their Effect Parameter Description atom container.
Applications can read in this atom to determine the Major Class of a particular
Effect.

jtdefine kEffectMajorClassType ‘clsa’
jidefine kEffectMajorClassID (1)

The following are the defined legal values for the Major Class atom. Effects that
fail to include a kEffectMajorClassType Will be classified as kMiscMajorClass.
Developers who feel their effect requires a new Major Class should contact
Apple. Because Major Classes are used for filtering by applications, any
extensions will need to be documented before they can become useful.

fidefine kGeneratorMajorClass ‘genr' // zero source effects

fidefine kFilterMajorClass 'filt' // one source effects

fidefine kTransitionMajorClass "tran' // multisource morph
// effects

jtdefine kCompositorMajorClass ‘comp' // multisource layer
// effects

fidefine kMiscMajorClass 'misc' // all other effects

Minor Class

Like the Major Class, the Minor Class of an effect serves to group the effect into
a more refined definition. Unlike the Major Class, however, the Minor Class is
intended to be used for grouping for the purposes of User Interface
presentation. It is not intended t